Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Design and characterisation of a high efficiency ceramic EBG patch antenna

Design and characterisation of a high efficiency ceramic EBG patch antenna

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This paper deals with the use of Electromagnetic Band gap-based high-efficiency planar ceramic antennas. The improvement of the overall performances with respect to the use of a standard high dielectric substrate is shown. Good impedance matching and radiation performances are obtained in addition to a reasonably high efficiency with values over 50% at the operational frequency. The antenna has been breadboarded and measured and good agreement has been obtained between simulations and measurements.

References

    1. 1)
      • B. Lee , F.J. Harackiewicz . Miniature microstrip antenna with a partially filled high-permittivity substrate. IEEE Trans. Antennas Propag. , 8 , 1160 - 1162
    2. 2)
      • E. Newman , P. Hohley , C.H. Walter . Two methods for the measurement of antenna efficiency. IEEE Trans. Antennas Propag. , 4 , 457 - 461
    3. 3)
      • J.S. Kula , D. Psychoudakis , W.-J. Liao , C.-C. Chen , J.L. Volakis , J.W. Halloran . Patch antenna miniaturization using recently available ceramic substrates. AP Magazine , 6 , 13 - 20
    4. 4)
      • C.A. Balanis . (1997) Antenna theory, analysis and design.
    5. 5)
      • D. Sievenpiper , L.J. Zhang , R.F.J. Broas , N.G. Alexopolous , E. Yablonovitch . High-impedance electromagnetic surfaces in a forbidden frequency band. IEEE Trans. Microw. Theory Tech. , 11 , 2059 - 2074
    6. 6)
      • D.B. Rutledge , D.P. Neikirk , D.P. Kasilingam . Infrared and millimeter waves.
    7. 7)
      • R.L. Li , G. DeJean , M.M. Tentzeris , J. Papapolymerou , J. Laskar . FDTD analysis of patch antennas on high dielectric-constant substrates surrounded by a soft-and-hard surface. IEEE Trans. Magn. , 2 , 1444 - 1447
    8. 8)
      • D. Psychoudakis , Y.H. Koh , J.L. Volakis , J.H. Halloran . Design method for aperture-coupled microstrip patch antennas on textured dielectric substrates. IEEE Trans. Antennas Propag. , 10
    9. 9)
      • Y. Qian , R. Coccioli , D. Sievenpiper , V. Radisic , E. Yablonovitch , T. Itoh . Micro-strip patch antenna using novel photonic band-gap structures. Microw. J. , 1 , 66 - 67
    10. 10)
      • J.B. Muldavin , T.J. Ellis , G.M. Rebeiz . Tapered slot antennas on thick dielectric substrates using micromachining techniques. APS symposium
    11. 11)
      • Y.P. Zhang , C.W.Y. Ang , C.S.C. Lee , M.A. Do . A stacked patch antenna of very high-permittivity material. Microw. Opt. Technol. Lett. , 6 , 395 - 396
    12. 12)
      • F. Yang , Y. Rahmat-Samii . (2009) Electromagnetic band gap structures in antenna engineering.
    13. 13)
      • Q.-R. Zheng , Y.-Q. Fu , N.-C. Yuan . A novel compact spiral Electromagnetic Band-Gap (EBG) structure. IEEE Trans. Antennas Propag. , 6 , 1656 - 1660
    14. 14)
      • J.R. James , J.C. Vardaxoglou . Investigation of properties of electrical-small spherical ceramic antennas. Electron. Lett. , 20 , 1160 - 1162
    15. 15)
      • F. Caminita , S. Costanzo , G. Di Massa . Reduction of patch antenna coupling by using a compact EBG formed by shorted strips with interlocked branch-stubs. IEEE Antennas Wirel. Propag. Lett. , 811 - 814
    16. 16)
      • R. Gonzalo , P.J.I. de Maagt , M. Sorolla . Enhanced patch antenna performance by suppressing surface waves using Photonic Band-Gap structures. IEEE Trans. Microw. Theory Tech. , 11 , 2131 - 2138
    17. 17)
      • R. Baggen , M. Martinez-Vazquez , J. Leiss , S. Holzwarth , L.S. Drioli , P. de Maagt . Low profile GALILEO antenna using EBG technology. IEEE Trans. Antennas Propag. , 3 , 667 - 674
    18. 18)
      • I. Ederra , B.M. Pascual , A.B. Labajos , J. Teniente , R. Gonzalo , P. de Maagt . Experimental verification of the reduction of coupling between dipole antennas by using a woodpile substrate. IEEE Trans. Antennas Propag. , 7 , 2105 - 2112
    19. 19)
      • D.H. Schaubert , K.S. Yngvesson . Experimental study of a microstrip array on high permittivity substrate. IEEE Trans. Antennas Propag. , 1 , 92 - 96
    20. 20)
      • J.S. Colburn , Y. Rahmat-Samii . Patch antennas on externally perforated high dielectric constant substrates. IEEE Trans. Antennas Propag. , 12 , 1785 - 1794
    21. 21)
      • J.C. Iriarte , I. Ederra , R. Gonzalo , P. de Maagt . High K EBG substrates for phased array patch antenna configurations. Microw. Opt. Technol. Lett. , 6 , 527 - 532
    22. 22)
      • A. Hoorfar , A. Perrotta . An experimental study of microstrip antennas on very high permittivity ceramic substrates and very small ground planes. IEEE Trans. Antennas Propag. , 4 , 838 - 840
    23. 23)
      • S.G. Johnson , J.D. Joannopoulos . Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. Opt. Express , 3 , 173 - 190
    24. 24)
      • H. Kratz , E. Öjefors , L. Stenmark . Micromachined S-band patch antenna with reduced dielectric constant. Sensors Actuators A , 478 - 484
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2009.0589
Loading

Related content

content/journals/10.1049/iet-map.2009.0589
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address