Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Construction of Green's functions of parallel plates with periodic texture with application to gap waveguides – a plane-wave spectral-domain approach

Construction of Green's functions of parallel plates with periodic texture with application to gap waveguides – a plane-wave spectral-domain approach

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents Green's functions of parallel-plate structures, where one plate has a smooth conducting surface and the other an artificial surface realised by a one-dimensional or two-dimensional periodic metamaterial-type texture. The purpose of the periodic texture is to provide cut-off of the lowest order parallel-plate modes, thereby forcing electromagnetic energy to follow conducting ridges or strips, that is, to form a gap waveguide as recently introduced. The Green's functions are constructed by using the appropriate homogenised ideal or asymptotic boundary conditions in the plane-wave spectral domain, thereby avoiding the complexity of the Floquet-mode expansions. In the special case of a single ridge or strip, an additional numerical search for propagation constants is needed and performed in order to satisfy the boundary condition on the considered ridge or strip in the spatial domain. The results reveal the dispersion characteristics of the quasi-transverse electromagnetic modes that propagate along the ridges or strips, including their lower and upper cut-off frequencies, as well as the theoretical decay of the modal field in the transverse cut-off direction. This lateral decay shows values of 50–100 dB per wavelength for realisable geometries, indicating that the gap waveguide modes are extremely confined. The analytical formulas for the location of the stopband of the lowest order parallel-plate modes obtained by small-argument approximation of the dispersion equation are also shown. To verify the proposed analysis approach, the results are compared with the results obtained with a general electromagnetic solver showing very good agreement.

References

    1. 1)
      • CST Microwave Studio 2008. Available at www.cst.com.
    2. 2)
      • M.G. Silveirinha , C.A. Fernandes , J.R. Costa . Electromagnetic characterization of textured surfaces formed by metallic pins. IEEE Trans. Antennas Propag. , 2 , 405 - 415
    3. 3)
      • D.S. Jones . (1964) The theory of electromagnetism.
    4. 4)
      • M. Ng Mou Kehn , M. Nannetti , A. Cucini , S. Maci , P.-S. Kildal . Analysis of dispersion in dipole-FSS loaded hard rectangular waveguide. IEEE Trans. Antennas Propag. , 8 , 2275 - 2282
    5. 5)
      • R.W. Jackson , D.M. Pozar . Full-wave analysis of microstrip open-end and gap discontinuities. IEEE Trans. Microw. Theory Tech. , 10 , 1036 - 1042
    6. 6)
      • Alfonso, E., Kildal, P.-S., Valero, A., Herranz, J.I.: `Detection of local quasi-TEM waves in oversized waveguides with one hard wall for killing higher order global modes', IEEE Int. Symp. on Antennas and Propagation (IEEE AP-S), July 2008, San Diego, USA.
    7. 7)
      • N.K. Das , D.M. Pozar . A generalized spectral domain Green's function for multilayer dielectric substrates with applications to multilayer transmission lines. IEEE Trans. Microw. Theory Tech. , 3 , 326 - 335
    8. 8)
      • Rajo-Iglesias, E., Kildal, P.S.: `Numerical studies of bandwidth of parallel plate cut-off realized by bed of nails, corrugations and mushroom-type EBG for use in gap waveguides', Submitted to IET Microwaves, Antennas and Propagation, May 2009.
    9. 9)
      • D. Sievenpiper , L. Zhang , R.F.J. Broas , N.G. Alexopoulos , E. Yablonovitch . High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. , 11 , 2059 - 2074
    10. 10)
      • E. Rajo Iglesias , M. Caiazzo , L. Inclan-Sanchez , P.-S. Kildal . Comparison of bandgaps of mushroom-type EBG surface and corrugated and strip-type soft surfaces. IET Microw. Antennas Propag. , 2 , 184 - 189
    11. 11)
      • P.-S. Kildal , A. Kishk . EM modeling of surfaces with STOP or GO characteristics – artificial magnetic conductors and soft and hard surfaces. ACES J. , 3 , 32 - 40
    12. 12)
      • P. Padilla de la Torre , J.M. Fernández , M. Sierra-Castañer . Characterization of articial magnetic conductor strips for parallel plate planar antennas. Microw. Opt. Technol. Lett. , 2 , 498 - 504
    13. 13)
      • A. Valero-Nogueira , E. Alfonso , J.I. Herranz , M. Baquero . Planar slot-array antenna fed by an oversized quasi-TEM waveguide. Microw. Opt. Technol. Lett. , 8 , 1875 - 1877
    14. 14)
      • P.-S. Kildal . Artificially soft and hard surfaces in electromagnetics. IEEE Trans. Antennas Propag. , 10 , 1537 - 1544
    15. 15)
      • P.-S. Kildal , E. Alfonso , A. Valero-Nogueira , E. Rajo-Iglesias . Local metamaterial-based waveguides in gaps between parallel metal plates. IEEE Antennas Wirel. Propag. Lett. (AWPL) , 84 - 87
    16. 16)
      • E. Rajo-Iglesias , A. Uz Zaman , P.-S. Kildal . Parallel plate cavity mode suppression in microstrip circuit packages using a lid of nails. IEEE Microw. Wirel. Compon. Lett. , 1 , 31 - 33
    17. 17)
      • U.V. Gothelf , A. Østergaard . Full-wave analysis of a two slot microstrip filter using a new algorithm for computation of the spectral integrals. IEEE Trans. Microw. Theory Tech. , 1 , 101 - 108
    18. 18)
      • L.B. Felsen , N. Marcuvitz . (1973) Radiation and scattering of waves.
    19. 19)
      • D.M. Pozar . Radiation and scattering from a microstrip patch on a uniaxialsubstrate. IEEE Trans. Antennas Propag. , 6 , 613 - 621
    20. 20)
      • W.C. Chew . (1990) Waves and fields in inhomogeneous media.
    21. 21)
      • Z. Sipus , H. Merkel , P.-S. Kildal . Green's functions for planar soft and hard surfaces derived by asymptotic boundary conditions. IEE Proc. Microw. Antennas Propag. , 10 , 321 - 328
    22. 22)
      • Z. Sipus , P.-S. Kildal , R. Leijon , M. Johansson . An algorithm for calculating Green's functions of planar, circular cylindrical and spherical multilayer substrates. Appl. Comput. Electromagn. Soc. J. , 3 , 243 - 254
    23. 23)
      • P.-S. Kildal , A. Kishk , Z. Sipus . Asymptotic boundary conditions for strip-loaded and corrugated surfaces. Microw. Opt. Technol. Lett. , 2 , 99 - 101
    24. 24)
      • E.H. Newman , D. Forrari . Scattering from a microstrip patch. IEEE Trans. Antennas Propag. , 3 , 245 - 251
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2009.0399
Loading

Related content

content/journals/10.1049/iet-map.2009.0399
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address