Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Study of a microwave ferrite resonator antenna, based on a ferrimagnetic composite (Gd3Fe5O12)GdIGX–(Y3Fe5O12)YIG1−X

Study of a microwave ferrite resonator antenna, based on a ferrimagnetic composite (Gd3Fe5O12)GdIGX–(Y3Fe5O12)YIG1−X

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors report a study on microwave properties of a ferrimagnetic ceramic composite (Gd3Fe5O12)GdIGX–(Y3Fe5O12)YIG1−X. The magnetic and dielectric measurements at microwave frequency were made through the Hakki–Coleman's procedure and through the excitation of a cylindrical ferrite resonator antenna (FRA). The hysteresis loops of the GdIGXYIG1−X ferrimagnetic composite were obtained. The numerical simulation study was performed using Ansoft's High Frequency Structure Simulator (HFSS™) software. The agreement between the experimental data and the simulated results is very good. These results demonstrated that, by varying the material composition of the resonator, ferrimagnetic composite GdIGXYIG1−X could operate as a magneto-dielectric antenna with bandwidth in the range of 7.5–11% and in the frequency range of 4.4–5.3 GHz. Additionally, all FRAs presented a low negative value of τf, which indicates suitability for microwave applications such as mobile communication systems or satellite broadcast systems.

References

    1. 1)
      • Y. Kobayashi , M. Katoh . Microwave measurement of dielectric-properties of low-loss materials by the dielectric rod resonator method. IEEE Trans. Microw. Theory Tech. , 7 , 586 - 592
    2. 2)
      • A.J. Moulson , J.M.. Herbert . (2003) Electroceramics: materials–properties–applications.
    3. 3)
      • D.M. Pozar . (1990) Microwave engineering.
    4. 4)
      • C.A. Balanis . (1982) Antenna theory: analysis and design.
    5. 5)
      • Wu, Z., Davis, L.E., Drossos, G.: `Cylindrical dielectric resonator antenna arrays', 11thInt. Conf. Antennas and Propagation, Conference Publication no. 480, 2001, p. 668–671.
    6. 6)
      • P.J. de Castro , M.C.A. Nono . Microwave properties of barium nanotitanate dielectric resonators. J. Microw. Optoelectron. , 4 , 12 - 19
    7. 7)
      • R.D. Sánchez , J. Rivas , P. Vaqueiro , M.A. Lopez-Quintela , D. Caeiro . Particle size effects on magnetic garnets prepared by a properties of yttrium iron sol-gel method. J. Magn. Magn. Mater. , 92 - 98
    8. 8)
      • P.B.A. Fechine , M.J.S. da Rocha , M.R.P. Santos . Microstructural and electrical properties of PbTiO3 screen-printed thick films. J. Mater. Sci.: Mater. Electron. , 973 - 980
    9. 9)
      • P.B.A. Fechine , A. Távora , L.C. Kretly . Microstrip antenna on a high dielectric constant substrate: BaTiO3 (BTO)-CaCu3Ti4O12(CCTO) composite screen-printed thick films. IEEE J. Electron. Mater. , 10 , 1848 - 1856
    10. 10)
      • Goldman, A.: ‘Magnetic ceramics (ferrites)’, in ‘Engineered Materials Handbook – Ceramics and Glasses’, vol. 4 (ASM International – The Materials Information Society, 1991), p. 1161.
    11. 11)
      • A.F.L. Almeida , P.B.A. Fechine , L.C. Kretly , A.S.B. Sombra . BaTiO3 (BTO)-CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas. J. Mater. Sci. , 14 , 4623 - 4631
    12. 12)
      • B.W. Hakki , P.D. Coleman . A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microw. Theory Tech. , 4 , 402 - 410
    13. 13)
      • Z. Peng , H. Wang , X. Yao . Dielectric resonator antennas using high permittivity ceramics. Ceram. Int. , 1211 - 1214
    14. 14)
      • G.P. Junker , A.A. Kishk , A.W. Glisson , D. Kajfez . Effect of air-gap on cylindrical dielectric resonator antenna operating in TM(01) mode. Electron. Lett. , 2 , 97 - 98
    15. 15)
      • R. Grabovickic . Accurate calculations of geometrical factors of Hakki-Coleman shielded dielectric resonators. IEEE Trans. Appl. Supercond. , 3 , 4607 - 4612
    16. 16)
      • E.A. Nenasheva , N.F. Kartenko . High dielectric constant microwave ceramics. J. Eur. Ceram. Soc. , 2697 - 2701
    17. 17)
      • J.K. Plourde , D.F. Linn , H.M.J. O'Bryan , J. Thomson . Ba2Ti9O20 as a microwave dielectric resonator. J. Am. Ceram. Soc. , 418 - 420
    18. 18)
      • S.A. Long , M.W. Mcallister , L.C. Shen . The resonant cylindrical dielectric cavity antenna. IEEE Trans. Antennas Propag. , 3
    19. 19)
      • A.F.L. Almeida , P.B.A. Fechine , J.M. Sasaki . Optical and electrical properties of barium titanate-hydroxyapatite composite screen-printed thick films. Solid State Sci. , 267 - 278
    20. 20)
      • D. Kajfez , P. Guillon . (1986) Dielectric resonators.
    21. 21)
      • K.D.A. Saboia , B.A. Fechine P , M.R.P. Santos . Composite screen-printed thick films for high dielectric constant devices: Bi4Ti3O12-CaCu3Ti4O12 films. Polym. Compos. , 6 , 771 - 777
    22. 22)
      • A.F.L. Almeida , P.B.A. Fechine , J.C. Góes . Dielectric properties of BaTiO3 (BTO)-CaCu3Ti4O12 (CCTO) composite screen-printed thick films for high dielectric constant devices in the medium frequency (MF) range. Mater. Sci. Eng. B , 113 - 123
    23. 23)
      • A.F.L. Almeida , R.R. Silva , H.H.B. Rocha . Experimental and numerical investigation of a ceramic dielectric resonator (DRA): CaCu3Ti4O12 (CCTO). Phys. B: Condens. Matter , 1 , 586 - 594
    24. 24)
      • P.B.A. Fechine , A.F.L. Almeida , F.N.A. Freire . Dielectric relaxation of BaTiO3 (BTO)-CaCu3Ti4O12 (CCTO) composite screen-printed thick films at low temperatures. Mater. Chem. Phys. , 402 - 408
    25. 25)
      • G.P. Junker , A.A. Kishk , A.W. Glisson , D. Kajfez . Effect of an air-gap around the coaxial probe exciting a cylindrical dielectric resonator antenna. Electron. Lett. , 3 , 177 - 178
    26. 26)
      • K.M. Luk , K.W. Leung . (2002) Dielectric resonator antennas.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2008.0301
Loading

Related content

content/journals/10.1049/iet-map.2008.0301
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address