Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Fast and accurate calculation of scattered electromagnetic fields from building faces using Green's functions of semi-infinite medium

Fast and accurate calculation of scattered electromagnetic fields from building faces using Green's functions of semi-infinite medium

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A theoretical method based on the induction equivalence principle and Green's functions is presented here to calculate the scattered electromagnetic fields from exterior plane building facades in urban environment. The reflection coefficient of the whole inhomogeneous structure can be calculated for different incidence angles. The derivation of appropriate Green's functions is presented. The method takes into account the large-scale discontinuities on the facade. It is simple to implement and fast to obtain results because of the absence of poles in the Green's functions expressions. The accuracy of the method is discussed comparing to a commercial software and physical optics as another method based on equivalent currents. The article concludes with a statistical study on the influence of concrete permittivity variation on the reflection coefficient of a concrete–glass building facade.

References

    1. 1)
    2. 2)
    3. 3)
      • A. Robert . Dielectric permittivity of concrete between 50 Hz and 1 Hz and GPR measurements for building materials evaluation. J. Appl. Geophys. , 1 , 89 - 94
    4. 4)
    5. 5)
      • Mosig, J.R.: `Les structures microruban: Analyse au moyen des équations intégrales', 1984, PhD, Ecole Polytechnique fédérale de Lausanne, Lausanne, Swiss.
    6. 6)
      • J.A. Kong . Electromagnetic fields due to dipole antennas over stratified anisotropic media. Geophysics , 6
    7. 7)
      • J.R. Mosig , T.K. Sarkar . Comparison of quasi-static and exact electromagnetic fields from a horizontal electric dipole above a lossy dielectric backed by an imperfect ground plane. IEEE Trans. Microw. Theory Tech. , 4 , 379 - 387
    8. 8)
      • W.M. Chan , J.A. Kong , L. Tsang . Geophysical subsurface probing with a horizontal magnetic dipole. IEEE Trans. Antennas Propag. , 6 , 766 - 769
    9. 9)
      • S. Mostarshedi , E. Richalot , O. Picon . Semi-infinite reflection model of a multilayered dielectric through equivalent permittivity calculation. Microw. Opt. Technol. Lett. , 2 , 290 - 294
    10. 10)
      • Adous, M.: `Caractérisation électromagnétique des matériaux traités de génie civil dans la bande de fréquences 50 MHz–13 GHz', 2006, PhD, Nantes University, France, Ponts et Chaussées Central Lab.
    11. 11)
      • M.F. Iskander , Z. Yun . Propagation prediction models for wireless communication systems. IEEE Trans. Microwave Theory Tech. , 3
    12. 12)
    13. 13)
      • C.A. Balanis . (1989) Advanced engineering electromagnetics.
    14. 14)
      • S.R. Saunders , F.R. Bonar . Prediction of mobile radio wave propagation over buildings of irregular heights and spacing. IEEE Trans. Antennas Propag. , 2
    15. 15)
      • R. Harrington . On scattering by large conducting bodies. IEEE Trans. Antennas Propag. , 2 , 150 - 153
    16. 16)
      • P. Pongsilamanee , H.L. Bertoni . Specular and nonspecular scattering from building facades. IEEE Trans. Antennas Propag. , 7
    17. 17)
      • L. Tsang , J.A. Kong . Application of the radio-frequency interferometry method to a stratified anisotropic medium. IEEE Trans. Antennas Propag. , 5 , 725 - 728
    18. 18)
    19. 19)
      • M.F. Catedra , J. Perez . (1999) Cell planning for wireless communications.
    20. 20)
    21. 21)
      • S.Y. Tan , H.S. Tan . A microcellular communications propagation model based on the uniform theory of diffraction and multiple image theory. IEEE Trans. Antennas Propag. , 10 , 1317 - 1326
    22. 22)
      • J. Walfish , H.L. Bertoni . A theoretical model of UHF propagation in urban environments. IEEE Trans. Antennas Propag. , 12
    23. 23)
      • M. Lebherz , W. Wiesbeck , W. Krank . A versatile wave propagation model for the VHF/UHF range considering the three dimensional terrain. IEEE Trans. Antennas Propag. , 10
    24. 24)
      • E. Bahar . Full wave and physical optics solutions for scattered radiation fields by rough surfaces−energy and reciprocity relationships. IEEE Trans. Antennas Propag. , 4 , 603 - 614
    25. 25)
      • R.F. Harrington . (1961) Time-harmonic electromagnetic fields.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2008.0194
Loading

Related content

content/journals/10.1049/iet-map.2008.0194
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address