access icon free Multi-mode switching-based model predictive control approach for longitudinal autonomous driving with acceleration estimation

This study proposes a multi-mode switching longitudinal autonomous driving system based on model predictive control (MPC) with acceleration estimation of proceeding vehicle. A hierarchical control framework composed of three layers is utilised. In the first layer, five longitudinal driving scenarios are defined based on emergency degree. In the second layer, the MPC for longitudinal autonomous driving is designed and serving as the upper controller. Among which a non-linear tracking differentiator is used for acceleration estimation of preceding vehicle. In the third layer, the inverse longitudinal vehicle system dynamic model with strong non-linearity is considered in the lower controller. Proportional–integral–derivative feedback and feedforward control are combined to track the desired acceleration. Simulation and hardware-in-loop test results show that the multi-mode switching longitudinal autonomous driving system is feasible and effective, and has important value for engineering application.

Inspec keywords: feedforward; predictive control; nonlinear control systems; feedback; driver information systems; three-term control; control system synthesis

Other keywords: upper controller; desired acceleration; lower controller; inverse longitudinal vehicle system dynamic model; feedforward control; longitudinal driving scenarios; proceeding vehicle; MPC; nonlinear tracking differentiator; acceleration estimation; hierarchical control framework; multimode switching-based model predictive control approach; longitudinal autonomous driving system

Subjects: Control system analysis and synthesis methods; Optimal control; Traffic engineering computing; Nonlinear control systems

References

    1. 1)
    2. 2)
      • 18. Magdici, S., Althoff, M.: ‘Adaptive cruise control with safety guarantees for autonomous vehicles’, Ifac Papersonline, 2017, 50, (1), pp. 57745781.
    3. 3)
      • 23. Rainer, M., Baotic, M., Morari, M.: ‘Multi-object adaptive cruise control’. Hybrid Systems: Computation and Control, 6th Int. Workshop, HSCC 2003 Prague, Czech Republic, April 3–5, 2003, Proceedings, (2003).
    4. 4)
      • 28. Qu, T., Chen, H., Cao, D., et al: ‘Switching-based stochastic model predictive control approach for modeling driver steering skill’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (1), pp. 365375.
    5. 5)
      • 30. Bu, X., Wu, X., Zhang, R., et al: ‘Tracking differentiator design for the robust backstepping control of a flexible air-breathing hypersonic vehicle’, J. Franklin Inst. Eng. Appl. Math., 2015, 352, (4), pp. 17391765.
    6. 6)
      • 26. Plessen, M.G., Bernardini, D., Esen, H., et al: ‘Spatial-based predictive control and geometric corridor planning for adaptive cruise control coupled with obstacle avoidance’, IEEE Trans. Control Syst. Technol., 2018, 26, (1), pp. 3850.
    7. 7)
      • 19. Luo, Y., Chen, T., Zhang, S., et al: ‘Intelligent hybrid electric vehicle acc with coordinated control of tracking ability, fuel economy, and ride comfort’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (4), pp. 23032308.
    8. 8)
      • 3. Wang, X., Wang, W., Li, L., et al: ‘Adaptive control of Dc motor servo system with application to vehicle active steering’, IEEE-ASME Trans. Mechatronics, 2019, 24, (3), pp. 10541063.
    9. 9)
      • 7. Cheng, S., Li, L., Chen, X., et al: ‘Longitudinal autonomous driving based on game theory for intelligent hybrid electric vehicles with connectivity’, Appl. Energy, 2020, 268, (15), p. 115030.
    10. 10)
      • 15. Zhang, H.B., Huang, X.H., Peng, G., et al: ‘Dual-stage HDD head positioning using an H∞ almost disturbance decoupling controller and a tracking differentiator’, Mechatronics. (Oxf), 2009, 19, (5), pp. 788796.
    11. 11)
      • 29. Qu, T., Chen, H., Ji, Y., et al: ‘A stochastic model predictive control approach for modelling human driver steering control’, Int. J. Veh. Des., 2016, 70, (3), pp. 249277.
    12. 12)
      • 6. Cheng, S., Li, L., Guo, H., et al: ‘Longitudinal collision avoidance and lateral stability adaptive control system based on MPC of autonomous vehicles’, IEEE Trans. Intell. Transp. Syst., 2020, 21, (6), pp. 23762385.
    13. 13)
      • 16. Zhang, H.B., Huang, X.H., Wang, M., et al: ‘Precise control of linear systems subject to actuator saturation using tracking differentiator and reduced order composite nonlinear feedback control’, Int. Syst. Sci., 2012, 43, (2), pp. 220230.
    14. 14)
      • 24. Huang, Y., Ding, H., Zhang, Y., et al: ‘A motion planning and tracking framework for autonomous vehicles based on artificial potential field-elaborated resistance network (apfe-Rn) approach’, IEEE Trans. Ind. Electron., 2019, 67, (2), pp. 13761386.
    15. 15)
      • 9. Cheng, S., Li, L., Mei, M., et al: ‘Multiple-objective adaptive cruise control system integrated with DYC’, IEEE Trans. Veh. Technol., 2019, 68, (5), pp. 45504559.
    16. 16)
      • 32. Hu, X., Chen, H., Li, Z., et al: ‘An energy-saving torque vectoring control strategy for electric vehicles considering handling stability under extreme conditions’, IEEE Trans. Veh. Technol., 2020, 69, (10), pp. 1078710796.
    17. 17)
      • 5. Li, Y., Tang, C., Srinivas, P., et al: ‘Integral-sliding-mode braking control for connected vehicle platoon: theory and application’, IEEE Trans. Ind. Electron., 2018, 66, (6), pp. 46184628.
    18. 18)
      • 31. Luo, Y., Cao, K., Xiang, Y., et al: ‘Vehicle stability and attitude improvement through the coordinated control of longitudinal, lateral and vertical tyre forces for electric vehicles’, Int. J. Vehicle Design, 2015, 69, (1–4), pp. 2549.
    19. 19)
      • 12. Sun, S., Lin, H., Ma, J., et al: ‘Multi-sensor distributed fusion estimation with applications in networked systems: A review paper’, Inf. Fusion, 2017, 38, pp. 122134.
    20. 20)
      • 27. Zhao, R., Wong, P.K., Xie, Z., et al: ‘Real-time weighted multi-objective model predictive controller for adaptive cruise control systems’, Int. J. Automot. Technol., 2017, 18, (2), pp. 279292.
    21. 21)
      • 14. Tian, D.P., Shen, H.H., Dai, M.: ‘Improving the rapidity of nonlinear tracking differentiator via feedforward’, IEEE Trans. Ind. Electron., 2013, 61, (7), pp. 37363743.
    22. 22)
      • 25. Mauricio, M., Matute, J.A., Ray, L., et al: ‘Low speed longitudinal control algorithms for automated vehicles in simulation and real platforms’, Complexity, 2018, 2018, pp. 112.
    23. 23)
      • 20. Zhang, J., Ioannou, P.A.: ‘Longitudinal control of heavy trucks in mixed traffic: environmental and fuel economy considerations’, IEEE Trans. Intell. Transp. Syst., 2006, 7, (1), pp. 92104.
    24. 24)
      • 17. Song, X., Tang, W., Li, X., et al: ‘Estimation of vehicle relative acceleration based on two-level filter’, J. Southeast Univ., 2015, 45, (1), pp. 5155.
    25. 25)
      • 21. Jose, E.N., Gonzalez, C., Garcia, R., et al: ‘Acc + stop&Go maneuvers with throttle and brake fuzzy control’, IEEE Trans. Intell. Transp. Syst., 2006, 7, (2), pp. 213225.
    26. 26)
      • 8. Li, S., Gao, F., Cao, D., et al: ‘Multiple-model switching control of vehicle longitudinal dynamics for platoon-level automation’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 44804492.
    27. 27)
      • 22. Ganji, B., Kouzani, A.Z., Sui, Y.K., et al: ‘Adaptive cruise control of a hev using sliding mode control’, Expert Syst. Appl., 2014, 41, (2), pp. 607615.
    28. 28)
      • 10. Bareket, Z., Fancher, P.S., Peng, H., et al: ‘Methodology for assessing adaptive cruise control behavior’, IEEE Trans. Intell. Transp. Syst., 2003, 4, (3), pp. 123131.
    29. 29)
      • 4. Li, S.E., Gao, F., Li, K., et al: ‘Robust longitudinal control of multi-vehicle systems—a distributed H-infinity method’, IEEE Trans. Intell. Transp. Syst., 2018, 19, (9), pp. 27792788.
    30. 30)
      • 1. Walker, G.H., Stanton, N.A., Salmon, P.M.: ‘Trust in vehicle technology’, Int. J. Veh. Des., 2016, 70, (2), pp. 157182.
    31. 31)
      • 11. Wu, Z., Qiu, K., Gao, H.: ‘Driving policies of V2X autonomous vehicles based on reinforcement learning methods’, IET Intell. Transp. Syst., 2020, 14, pp. 331337.
    32. 32)
      • 13. Jingqing, H.: ‘Nonlinear tracking-differentiator’, J. Syst. Ence Math. Ences, 1994, 14, (2), pp. 37363743.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2020.0471
Loading

Related content

content/journals/10.1049/iet-its.2020.0471
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading