Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Analysing the relationship between weather, built environment, and public transport ridership

For a sustainable public transport system, it is important to unveil the spatiotemporal characteristics of ridership and identify the influence mechanisms. Some studies analysed the effects of weather and built environment separately, however, their effects when incorporated remains to be determined. Using smart card data, weather information, and point of interest data from Beijing, the Light Gradient Boosted Machine was employed to investigate the relative importance of weather and built environment variables contributing to daily ridership at the traffic analysis zone level, and investigate the non-linear relationship and interaction effects between them. Weather conditions and built environment contribute 30.22 and 55.83% to ridership fluctuations, respectively. Most variables show complex non-linear and threshold effects on ridership. The interaction effects of weather and weekend/public holiday have a more substantial influence on ridership than weekdays, indicating weather conditions have less impact on regular commuting trips than discretionary trips. The ridership fluctuations in response to changing weather conditions vary with spatial locations. Adverse weather, such as strong wind, high humidity, or heavy rainfall, has a more disruptive impact on leisure-related areas than on residence and office areas. This study can benefit stakeholders in making decisions about optimising public transport networks and scheduling service frequency.

References

    1. 1)
      • 27. Gutiérrez, J., Cardozo, O.D., García-Palomares, J.C.: ‘Transit ridership forecasting at station level: an approach based on distance-decay weighted regression’, J. Transp. Geogr., 2011, 19, (6), pp. 10811092.
    2. 2)
      • 40. Hastie, T., Tibshirani, R., Friedman, J.: ‘The elements of statistical learning: data mining, inference, and prediction’ (Springer Press, New York, USA, 2008, 2nd edn.).
    3. 3)
      • 26. Vergel-Tovar, C.E., Rodriguez, D.A.: ‘The ridership performance of the built environment for BRT systems: evidence from Latin America’, J. Transp. Geogr., 2018, 73, pp. 172184.
    4. 4)
      • 2. Chen, X., Wang, Y., Tang, J., et al: ‘Examining regional mobility patterns of public transit and automobile users based on the smart card and mobile internet data: a case study of Chengdu, China’, IET Intell. Transp. Syst., 2020, 14, (1), pp. 4555.
    5. 5)
      • 34. Zhang, Y., Haghani, A.: ‘A gradient boosting method to improve travel time prediction’, Transp. Res. C, Emerg. Technol., 2015, 58, pp. 308324.
    6. 6)
      • 18. Singhal, A., Kamga, C., Yazici, A.: ‘Impact of weather on urban transit ridership’, Transp. Res. A, Policy Pract., 2014, 69, pp. 379391.
    7. 7)
      • 15. Arana, P., Cabezudo, S., Peñalba, M.: ‘Influence of weather conditions on transit ridership: a statistical study using data from smartcards’, Transp. Res. A, Policy Pract., 2014, 59, pp. 112.
    8. 8)
      • 9. Liu, C., Susilo, Y.O., Karlström, A.: ‘Weather variability and travel behaviour – what we know and what we do not know’, Transp. Rev., 2017, 37, (6), pp. 715741.
    9. 9)
      • 30. Ding, C., Cao, X., Liu, C.: ‘How does the station-area built environment influence Metrorail ridership? Using gradient boosting decision trees to identify non-linear thresholds’, J. Transp. Geogr., 2019, 77, pp. 7078.
    10. 10)
      • 3. Ji, Y., Cao, Y., Liu, Y., et al: ‘Research on classification and influencing factors of metro commuting patterns by combining smart card data and household travel survey data’, IET Intell. Transp. Syst., 2019, 13, (10), pp. 15251532.
    11. 11)
      • 36. Wu, W., Jiang, S., Liu, R., et al: ‘Economic development, demographic characteristics, road network and traffic accidents in Zhongshan, China: gradient boosting decision tree model’, Transp. Transp. Sci., 2020, 16, (3), pp. 359387.
    12. 12)
      • 25. Cervero, R.: ‘Alternative approaches to modeling the travel-demand impacts of smart growth’, J. Am. Plann. Assoc., 2006, 72, (3), pp. 285295.
    13. 13)
      • 7. Cools, M., Moons, E., Creemers, L., et al: ‘Changes in travel behavior in response to weather conditions: do type of weather and trip purpose matter?’, Transp. Res. Rec. J. Transp. Res. Board, 2010, 2157, (1), pp. 2228.
    14. 14)
      • 22. Wei, M., Liu, Y., Sigler, T., et al: ‘The influence of weather conditions on adult transit ridership in the sub-tropics’, Transp. Res. A, Policy Pract., 2019, 125, pp. 106118.
    15. 15)
      • 20. Corcoran, J., Tao, S.: ‘Mapping spatial patterns of bus usage under varying local temperature conditions’, J. Maps, 2017, 13, (1), pp. 7481.
    16. 16)
      • 13. Ma, X., Zhang, J., Ding, C., et al: ‘A geographically and temporally weighted regression model to explore the spatiotemporal influence of built environment on transit ridership’, Comput. Environ. Urban Syst., 2018, 70, pp. 113124.
    17. 17)
      • 29. Cardozo, O.D., García-Palomares, J.C., Gutiérrez, J.: ‘Application of geographically weighted regression to the direct forecasting of transit ridership at station-level’, Appl. Geogr., 2012, 34, pp. 548558.
    18. 18)
      • 38. Ke, G., Meng, Q., Finely, T., et al: ‘LightGBM: a highly efficient gradient boosting decision tree’. Proc. Int. Conf. on NIPS'17, Long Beach, California, USA, December 2017, pp. 31463154.
    19. 19)
      • 21. Li, J., Li, X., Chen, D., et al: ‘Assessment of metro ridership fluctuation caused by weather conditions in Asian context: using archived weather and ridership data in Nanjing’, J. Transp. Geogr., 2018, 66, pp. 356368.
    20. 20)
      • 35. Ding, C., Cao, X., Wang, Y.: ‘Synergistic effects of the built environment and commuting programs on commute mode choice’, Transp. Res. A, Policy Pract., 2018, 118, pp. 104118.
    21. 21)
      • 41. Breiman, L.: ‘Random forests’, Mach. Learn., 2001, 45, (1), pp. 532.
    22. 22)
      • 17. Miao, Q., Welch, E.W., Sriraj, P.S.: ‘Extreme weather, public transport ridership and moderating effect of bus stop shelters’, J. Transp. Geogr., 2019, 74, pp. 125133.
    23. 23)
      • 12. Chakour, V., Eluru, N.: ‘Examining the influence of stop level infrastructure and built environment on bus ridership in Montreal’, J. Transp. Geogr., 2016, 51, pp. 205217.
    24. 24)
      • 19. Zhou, M., Wang, D., Li, Q., et al: ‘Impacts of weather on public transport ridership: results from mining data from different sources’, Transp. Res. C, Emerg. Technol., 2017, 75, pp. 1729.
    25. 25)
      • 5. An, D., Tong, X., Liu, K., et al: ‘Understanding the impact of built environment on metro ridership using open source in Shanghai’, Cities, 2019, 93, pp. 177187.
    26. 26)
      • 10. Kashfi, S.A., Bunker, J.M., Yigitcanlar, T.: ‘Modelling and analysing effects of complex seasonality and weather on an area's daily transit ridership rate’, J. Transp. Geogr., 2016, 54, pp. 310324.
    27. 27)
      • 11. Abenoza, R.F., Liu, C., Cats, O., et al: ‘What is the role of weather, built-environment and accessibility geographical characteristics in influencing travelers’ experience?’, Transp. Res. A, Policy Pract., 2019, 122, pp. 3450.
    28. 28)
      • 1. ‘Beijing public transport network master planning’. Available at http://jtw.beijing.gov.cn/xxgk/tpxw/202004/P020200410652921416550.pdf, accessed 5 May 2020.
    29. 29)
      • 28. Kuby, M., Barranda, A., Upchurch, C.: ‘Factors influencing light-rail station boardings in the United States’, Transp. Res. A, Policy Pract., 2004, 38, (3), pp. 223247.
    30. 30)
      • 8. Sabir, M.: ‘Weather and travel behaviour’. PhD thesis, VU University, 2011.
    31. 31)
      • 24. Ewing, R., Cervero, R.: ‘Travel and the built environment: a meta-analysis’, J. Am. Plann. Assoc., 2010, 76, (3), pp. 265294.
    32. 32)
      • 23. Tao, S., Corcoran, J., Hickman, M., et al: ‘The influence of weather on local geographical patterns of bus usage’, J. Transp. Geogr., 2016, 54, pp. 6680.
    33. 33)
      • 37. Tang, T., Liu, R., Choudhury, C.: ‘Incorporating weather conditions and travel history in estimating the alighting bus stops from smart card data’, Sustain. Cities Soc., 2020, 53, p. 101927.
    34. 34)
      • 42. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: ‘Learning representations by back-propagating errors’, Nature, 1986, 323, (6088), pp. 533536.
    35. 35)
      • 14. Stover, V., McCormack, E.: ‘The impact of weather on bus ridership in Pierce county, Washington’, J. Public Transp., 2012, 15, (1), pp. 95110.
    36. 36)
      • 39. Friedman, J.H.: ‘Greedy function approximation: a gradient boosting machine’, Ann. Stat., 2001, 29, pp. 11891232.
    37. 37)
      • 33. Chung, Y.-S.: ‘Factor complexity of crash occurrence: an empirical demonstration using boosted regression trees’, Accid. Anal. Prev., 2013, 61, pp. 107118.
    38. 38)
      • 16. Tao, S., Corcoran, J., Rowe, F., et al: ‘To travel or not to travel: ‘Weather’ is the question. Modelling the effect of local weather conditions on bus ridership’, Transp. Res. C, Emerg. Technol., 2018, 86, pp. 147167.
    39. 39)
      • 4. Guo, Z., Wilson, N.H.M., Rahbee, A.: ‘Impact of weather on transit ridership in Chicago, Illinois’, Transp. Res. Rec. J. Transp. Res. Board, 2007, 2034, (1), pp. 310.
    40. 40)
      • 32. Weng, J., Wang, C., Wang, Y., et al: ‘Extraction method of public transit trip chains based on the individual riders’ data’, J. Transp. Syst. Eng. Inf. Technol., 2017, 17, pp. 6773.
    41. 41)
      • 31. Ma, X., Liu, C., Wen, H., et al: ‘Understanding commuting patterns using transit smart card data’, J. Transp. Geogr., 2017, 58, pp. 135145.
    42. 42)
      • 6. Zhao, J., Deng, W., Song, Y., et al: ‘Analysis of Metro ridership at station level and station-to-station level in Nanjing: an approach based on direct demand models’, Transportation, 2014, 41, (1), pp. 133155.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2020.0469
Loading

Related content

content/journals/10.1049/iet-its.2020.0469
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address