access icon free Lane-changing decision method based Nash Q-learning with considering the interaction of surrounding vehicles

In order to ensure a safer and more reliable trajectory during the lane change process, the motion decision algorithm needs to predict the possibility of different interaction behaviours with surrounding vehicles and then makes an advantageous decision. For this purpose, a motion decision method of considering the interaction of surrounding vehicles is proposed. Firstly, this study builds the payoff functions to determine the driving revenue of autonomous driving vehicles. Then, an interactive motion prediction method based on game theory is established to predict the interaction behaviours possibility and future local trajectories of surrounding vehicles. Based on this, a motion decision algorithm based on Nash Q-learning for an autonomous driving vehicle is established. With externalising the main behaviours predicted by the interactive game and the greedy optimisation method, the autonomous vehicle can determine the optimal sequence of actions and take into account the interaction of the surrounding vehicles. Finally, the motion decision in this study is validated by MATLAB in the merging lane scene, and compared with the existing rule-based lane change decision algorithm. The results show that the decision method in this study not only has superiority in safety and efficiency but also can effectively predict the interaction of surrounding vehicles.

Inspec keywords: optimisation; decision making; driver information systems; game theory; road vehicles; road traffic; traffic engineering computing; object detection

Other keywords: autonomous vehicle; existing rule-based lane change decision algorithm; advantageous decision; interactive motion prediction method; Nash Q-learning; lane-changing decision method; lane change process; autonomous driving vehicle; different interaction; motion decision method; interactive game; motion decision algorithm

Subjects: Traffic engineering computing; Combinatorial mathematics; Control engineering computing; Computer vision and image processing techniques

References

    1. 1)
      • 23. Xu, W.D., Pan, J., Wei, J.Q., et al: ‘Motion planning under uncertainty for on-road autonomous driving’. Proc. IEEE Int. Conf. Robot. Autom., Hong Kong, China, 2014, pp. 25072512.
    2. 2)
      • 14. Firl, J., Tran, Q.: ‘Probabilistic maneuver prediction in traffic scenarios’. Proc. Eur. Conf. Mob. Robot., Rebro, Sweden, 2011, pp. 16.
    3. 3)
      • 5. Toledo-Moreo, R., Zamora-Izquierdo, M.A.: ‘IMM-based lanechange prediction in highways with low-cost GPS/INS’, IEEE Trans. Intell. Transp. Syst., 2009, 10, (1), pp. 180185.
    4. 4)
      • 22. Nilsson, J., Brannstrom, M., Fredriksson, J., et al: ‘Longitudinal and lateral control for automated yielding maneuvers’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (5), pp. 14041414.
    5. 5)
      • 21. Yang, D., Zheng, S.Y., Wen, C., et al: ‘A dynamic lane-changing trajectory planning model for automated vehicles’, Transp. Res. C: Emerg. Technol., 2018, 95, pp. 228247.
    6. 6)
      • 1. Bevly, D., Cao, X., Gordon, M., et al: ‘Lane change and merge maneuvers for connected and automated vehicles: a survey’, IEEE Trans. Intell. Veh., 2016, 1, (1), pp. 105120.
    7. 7)
      • 32. Skrickij, V., Šabanovič, E., Žuraulis, V.: ‘Autonomous road vehicles: recent issues and expectations’, IET Intell. Transp. Syst., 2020, 14, (6), pp. 471479.
    8. 8)
      • 2. Lefèvre, S., Vasquez, D., Laugier, C.: ‘A survey on motion prediction and risk assessment for intelligent vehicles’, Robomech. J., 2014, 1, (1), pp. 114.
    9. 9)
      • 11. Kim, J., Kum, D.: ‘Collision risk assessment algorithm via lane-based probabilistic motion prediction of surrounding vehicles’, IEEE Trans. Intell. Transp. Syst., 2018, 19, (9), pp. 29652976.
    10. 10)
      • 28. Yao, W., Zhao, H., Bonnifait, P., et al: ‘Lane change trajectory prediction by using recorded human driving data’. Proc. IEEE Intell. Vehicles Symp., Queensland,Australia, June 2013, pp. 430436.
    11. 11)
      • 20. Wang, M., Hoogendoorn, S.P., Daamen, W., et al: ‘Game theoretic approach for predictive lane-changing and car-following control’, Transp. Res. C: Emerg. Technol., 2015, 58, pp. 7392.
    12. 12)
      • 7. Houenou, A., Bonnifait, P., Cherfaoui, V., et al: ‘Vehicle trajectory prediction based on motion model and maneuver recognition’. Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Tokyo, Japan, November 2013, pp. 43634369.
    13. 13)
      • 31. Yang, D., Jin, J.P., Pu, Y., et al: ‘Safe distance car-following model including backward-looking and its stability analysis’, Eur. Phys. J. B, 2013, 86, p. 92.
    14. 14)
      • 17. Talebpour, A., Mahmassani, H.S., Hamdar, S.H.: ‘Modeling lane-changing behavior in a connected environment: a game theory approach’, Transp. Res. C: Emerg. Technol., 2015, 59, pp. 216232.
    15. 15)
      • 26. Rauskolb, F.W., Berger, K., Lipski, C., et al: ‘An autonomously driving vehicle for urban environments’, J. Field Robot., 2008, 25, (9), pp. 674724.
    16. 16)
      • 4. Eidehall, A., Petersson, L.: ‘Statistical threat assessment for general road scenes using Monte Carlo sampling’, IEEE Trans. Intell. Transp. Syst., 2008, 9, (1), pp. 137147.
    17. 17)
      • 10. Aoude, G.S., Luders, B.D., Joseph, J.M., et al: ‘Probabilistically safe motion planning to avoid dynamic obstacles with uncertain motion patterns’, Auton. Robots, 2013, 35, (1), pp. 5176.
    18. 18)
      • 6. Petrich, D., Dang, T., Kasper, D., et al: ‘Map-based long term motion prediction for vehicles in traffic environments’. Proc. IEEE Conf. Intell. Transp. Syst., Gelderland, Holland, October 2013, pp. 21662172.
    19. 19)
      • 12. Kasper, D., Weidl, G., Dang, T., et al: ‘Object-oriented Bayesian networks for detection of lane change maneuvers’, IEEE Intell. Transp. Syst. Mag., 2012, 19, (3), pp. 1931.
    20. 20)
      • 3. Huang, J., Tan, H.-S.: ‘DGPS-based vehicle-to-vehicle cooperative collision warning: engineering feasibility viewpoints’, IEEE Trans. Intell. Transp. Syst., 2006, 7, (4), pp. 415428.
    21. 21)
      • 9. Bahram, M., Anton, W., Aeberhard, M., et al: ‘A predictionbased reactive driving strategy for highly automated driving function on freeways’. Proc. IEEE Intell. Veh. Symp., Michigan, USA, 2014, pp. 400406.
    22. 22)
      • 19. Yu, H.T., Tseng, H.E., Langari, R.: ‘A human-like game theory-based controller for automatic lane changing’, Transp. Res. C: Emerg. Technol., 2018, 88, pp. 140158.
    23. 23)
      • 30. Hubmann, C., Schulz, J., Becker, M., et al: ‘Automated driving in uncertain environments: planning with interaction and uncertain maneuver prediction’, IEEE Trans. Intell. Veh., 2018, 3, (1), pp. 517.
    24. 24)
      • 13. Schreier, M., Willert, V., Adamy, J.: ‘An integrated approach to maneuver-based trajectory prediction and criticality assessment in arbitrary road environments’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (10), pp. 27512766.
    25. 25)
      • 24. Wang, Y.J., Liu, Z.X., Zuo, Z.Q., et al: ‘Trajectory planning and safety assessment of autonomous vehicles based on motion prediction and model predictive control’, IEEE Trans. Veh. Technol., 2019, 68, (9), pp. 85468556.
    26. 26)
      • 8. Wiest, J., Karg, M., Kunz, F., et al: ‘A probabilistic maneuver prediction framework for self-learning vehicles with application to intersections’. Proc. IEEE Intell. Veh. Symp., Seoul, South Korea, July 2015, pp. 349355.
    27. 27)
      • 25. Zheng, H.Y., Zhou, J., Shao, Q., et al: ‘Investigation of a longitudinal and lateral lane-changing motion planning model for intelligent vehicles in dynamical driving environments’, IEEE Access, 2019, 7, pp. 4478344802.
    28. 28)
      • 27. Brannstrom, M., Sandblom, F., Hammarstrand, L.: ‘A probabilistic framework for decision-making in collision avoidance systems’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (2), pp. 637648.
    29. 29)
      • 16. Bahram, M., Lawitzky, A., Friedrichs, J., et al: ‘A game-theoretic approach to replanning-aware interactive scene prediction and planning’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 39813992.
    30. 30)
      • 15. Aoude, G.S., Desaraju, V.R., Stephens, L., et al: ‘Driver behavior classification at intersections and validation on large naturalistic data set’, IEEE Trans. Intell. Transp. Syst., 2012, 13, (2), pp. 724736.
    31. 31)
      • 18. Yoo, J.H., Langari, R.: ‘Stackelberg game based model of highway driving’. Proc. ASME 5th Annual Dynamics Systems Control Conf. Joint JSME 11th Motion Vibrat. Conf., Florida, USA, 2012, pp. 499508.
    32. 32)
      • 29. Xu, C., Zhao, W., Wang, C.: ‘An integrated threat assessment algorithm for decision-making of autonomous driving vehicles’, IEEE Trans. Intell. Transp. Syst., 2020, 21, (6), pp. 25102521.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2020.0427
Loading

Related content

content/journals/10.1049/iet-its.2020.0427
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading