Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Efficient deep learning based method for multi-lane speed forecasting: a case study in Beijing

Real-time and accurate multi-lane traffic condition forecasting is of great importance to the connected and automated vehicle highway system. However, the majority of existing deep learning based traffic prediction methods focus on pursuing the precision of the methods while neglect to improve the efficiency of the methods. To achieve the high accuracy and high efficiency of multi-lane traffic flow prediction simultaneously, this study proposes a novel combination method via the integration of the clockwork recurrent neural network (CWRNN) and random forest (RF) method, which is RF-CWRNN. To the best of the authors’ knowledge, this is the first time that the CWRNN is introduced to capture the temporal feature of lane-level traffic flow and make traffic speed prediction. Meanwhile, the RF method is employed to measure the temporal relevance of the traffic flow and determine the optimal input time window. To verify the performance of the RF-CWRNN method, the ground-truth data of the expressways in Beijing were utilised to carry out experiments. The results indicate that the RF-CWRNN method is superior to the baseline models in terms of accuracy and robustness. Besides, the proposed method can save plenty of training time compared with the classical long short-term memory neural network.

References

    1. 1)
      • 51. Breiman, L.: ‘Random forests’, Mach. Learn., 2001, 45, pp. 521.
    2. 2)
      • 26. Peng, Y., Xiang, W.: ‘Short-term traffic volume prediction using GA-BP based on wavelet denoising and phase space reconstruction’, Phys. A Stat. Mech. Its Appl., 2020, 549, p. 123913.
    3. 3)
      • 37. Zhang, Q., Qian, H., Chen, Y., et al: ‘A short-term traffic forecasting model based on echo state network optimized by improved fruit fly optimization algorithm’, Neurocomputing, 2020, 416, pp. 117124.
    4. 4)
      • 4. Yao, Z., Jiang, Y., Zhao, B., et al: ‘A dynamic optimization method for adaptive signal control in a connected vehicle environment’, J. Intell. Transp. Syst., 2020, 24, (2), pp. 184200.
    5. 5)
      • 45. Jia, Y., Wu, J., Ben-Akiva, M., et al: ‘Rainfall-integrated traffic speed prediction using deep learning method’, IET Intell. Transp. Syst., 2017, 11, (9), pp. 531536.
    6. 6)
      • 17. Williams, B.M., Hoel, L. A.: ‘Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results’, J. Transp. Eng., 2003, 129, (6), pp. 664672.
    7. 7)
      • 49. Niu, K., Zhang, H., Zhou, T., et al: ‘A novel spatiooral model for city-scale traffic speed prediction’, IEEE Access, 2019, 7, pp. 30 05030 057.
    8. 8)
      • 56. Lu, W., Rui, Y., Ran, B.: ‘Lane-level traffic speed forecasting: A novel mixed deep learning model’, IEEE Trans. Intell. Transp. Syst., 2020, pp. 112, early access.
    9. 9)
      • 31. Tang, J., Fang, L., Zou, Y., et al: ‘An improved fuzzy neural network for traffic speed prediction considering periodic characteristic’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (9), pp. 111.
    10. 10)
      • 21. Chen, X., Zhang, S., Li, L.: ‘Multi-model ensemble for short-term traffic flow prediction under normal and abnormal conditions’, IET Intell. Transp. Syst., 2019, 13, (2), pp. 260268.
    11. 11)
      • 9. Vlahogianni, E.I., Golias, J.C., Karlaftis, M.G.: ‘Short-term traffic forecasting: overview of objectives and methods’, Transp. Rev., 2004, 24, (5), pp. 533557.
    12. 12)
      • 41. Hua, M., Chen, J., Chen, X., et al: ‘Forecasting usage and bike distribution of dockless bike-sharing using journey data’, IET Intell. Transp. Syst., 2020, 14, (12), pp. 16471656.
    13. 13)
      • 2. Figueiredo, L., Jesus, I., Tenreiro Machado, J.A., et al: ‘Towards the development of intelligent transportation systems’. Proc of ITSC, Oakland, CA, USA, 2001, (81), pp. 12061211.
    14. 14)
      • 18. Chen, C., Hu, J., Meng, Q., et al: ‘Short-time traffic flow prediction with ARIMA-GARCH model’. Proc of IEEE IV, Baden-Baden, Germany, 2011, pp. 607612.
    15. 15)
      • 19. Castro-Neto, M., Jeong, Y.S., Jeong, M.K., et al: ‘Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions’, Expert. Syst. Appl., 2009, 36, (3), pp. 61646173.
    16. 16)
      • 39. Ma, X., Tao, Z., Wang, Y., et al: ‘Long short-term memory neural network for traffic speed prediction using remote microwave sensor data’, Transp. Res. Part C Emerg. Technol., 2015, 54, pp. 187197.
    17. 17)
      • 44. Yang, B., Sun, S., Li, J., et al: ‘Traffic flow prediction using LSTM with feature enhancement’, Neurocomputing, 2019, 332, pp. 320327.
    18. 18)
      • 55. Daganzo, C.F.: ‘A behavioral theory of multi-lane traffic flow. Part I: long homogeneous freeway sections’, Transp. Res. Part B Methodol., 2002, 36, (2), pp. 131158.
    19. 19)
      • 25. Goh, A.T.: ‘Back-propagation neural networks for modeling complex systems’, Artif. Intell. Eng., 1995, 9, (3), pp. 143151.
    20. 20)
      • 3. Ran, B., Cheng, Y., Li, S., et al: ‘Connected automated vehicle highway systems and methods’, 2019.
    21. 21)
      • 15. Van der Voort, M., Dougherty, M., Watson, S.: ‘Combining Kohonen maps with ARIMA time series models to forecast traffic flow’, Transp. Res. Part C Emerg. Technol., 1996, 4, pp. 307318.
    22. 22)
      • 6. Smith, B.L., Williams, B.M., Keith Oswald, R.: ‘Comparison of parametric and nonparametric models for traffic flow forecasting’, Transp. Res. Part C Emerg. Technol., 2002, 10, (4), pp. 303321.
    23. 23)
      • 5. Tian, D., Wu, G., Hao, P., et al: ‘Connected vehicle-based lane selection assistance application’, IEEE Trans. Intell. Transp. Syst., 2019, 20, (7), pp. 26302643.
    24. 24)
      • 42. Do, L.N., Vu, H.L., Vo, B.Q., et al: ‘An effective spatial-temporal attention based neural network for traffic flow prediction’, Transp. Res. C Emerg. Technol., 2019, 108, pp. 1228.
    25. 25)
      • 14. Hamed, M., Al-Masaeid, H., Said, Z.: ‘Short-term prediction of traffic volume in urban arterials’, J. Transp. Eng., 1995, 121, (3), pp. 249254.
    26. 26)
      • 35. Lv, Y., Duan, Y., Kang, W., et al: ‘Traffic flow prediction with big data: A deep learning approach’, IEEE Trans. Intell. Transp. Syst., 2014, 12, (6), pp. 865873.
    27. 27)
      • 48. Gu, Y., Lu, W., Xu, X., et al: ‘An improved Bayesian combination model for short-term traffic prediction with deep learning’, IEEE Trans. Intell. Transp. Syst., 2020, 21, (3), pp. 111.
    28. 28)
      • 47. Yu, B., Lee, Y., Sohn, K.: ‘Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN)’, Transp. Res. Part C Emerg. Technol., 2020, 114, pp. 189204.
    29. 29)
      • 27. Smith, B., Demetsky, M.: ‘Short-term traffic flow prediction: neural network approach’, Transp. Res. Rec., J. Transp. Res. Board, 1994, 1453, pp. 98104.
    30. 30)
      • 50. Georgiadou, D., Diakoloukas, V., Tsiaras, V., et al: ‘Clockwork-RNN based architectures for slot filling’. Proc of INTERSPEECH, San Francisco, CA, USA, 2017, pp. 24812485.
    31. 31)
      • 46. Jo, D., Yu, B., Jeon, H., et al: ‘Image-to-image learning to predict traffic speeds by considering area-wide spatio-temporal dependencies’, IEEE Trans. Veh. Technol., 2019, 68, (2), pp. 11881197.
    32. 32)
      • 8. Zheng, X., Chen, W., Wang, P., et al: ‘Big data for social transportation’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (3), pp. 620630.
    33. 33)
      • 57. Huang, Y., Sun, D.J., Garrick, N., et al: ‘Evaluating shanghai's non-local vehicle restriction policy using the empirical macroscopic fundamental diagram’. Proc of STRC, Ascona, Switzerland, 09 2018, pp. 119.
    34. 34)
      • 11. Xie, Y., Zhang, Z., Sapkota, M., et al: ‘Spatial clockwork recurrent neural network for muscle perimysium segmentation’. Proc of Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 2016, pp. 185193.
    35. 35)
      • 54. Shiomi, Y., Taniguchi, T., Uno, N., et al: ‘Multilane first-order traffic flow modelwith endogenous representation of lane-flow equilibrium’, Transp. Res. Procedia, 2015, 7, pp. 398419.
    36. 36)
      • 10. Koutník, J., Greff, K., Gomez, F., et al: ‘A clockwork rnn’. Proc of Int. Conf. on Machine Learning, Beijing, China, 2014, pp. 18631871.
    37. 37)
      • 22. Zhan, X., Zhang, S., Szeto, W. Y., et al: ‘Multi-step-ahead traffic speed forecasting using multi-output gradient boosting regression tree’, J. Intell. Transp. Syst., 2020, 24, (2), pp. 125141.
    38. 38)
      • 32. Guo, J., Huang, W., Williams, B. M.: ‘Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification’, Transp. Res. Part C Emerg. Technol., 2014, 43, pp. 5064.
    39. 39)
      • 30. Nikravesh, A.Y., Ajila, S.A., Lung, C.H., et al: ‘Mobile network traffic prediction using MLP, MLPWD, and SVM’. Proc of IEEE BigData, 2016, pp. 402409.
    40. 40)
      • 29. Goves, C., North, R., Johnston, R., et al: ‘Short term traffic prediction on the UK motorway network using neural networks’, Transp. Res. Procedia, 2016, 13, pp. 184195.
    41. 41)
      • 13. Alpay, T., Heinrich, S., Wermter, S.: ‘Learning multiple timescales in recurrent neural networks’. Proc of Int. Conf. on Artificial Neural Networks, Barcelona, Spain, 09 2016, pp. 132139.
    42. 42)
      • 36. Li, L., Qin, L., Qu, X., et al: ‘Day-ahead traffic flow forecasting based on a deep belief network optimized by the multi-objective particle swarm algorithm’, Knowl.-Based Syst., 2019, 172, (15), pp. 114.
    43. 43)
      • 33. Emami, A., Sarvi, M., Asadi Bagloee, S.: ‘Using Kalman filter algorithm for short-term traffic flow prediction in a connected vehicle environment’, J. Mod. Transp., 2019, 27, (3), pp. 222232.
    44. 44)
      • 34. Huang, W., Song, G., Hong, H., et al: ‘Deep architecture for traffic flow prediction: deep belief networks with multitask learning’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (5), pp. 21912201.
    45. 45)
      • 20. Ojeda, L.L., Kibangou, A.Y., De Wit, C.C.: ‘Adaptive Kalman filtering for multi-step ahead traffic flow prediction’. Proc of IEEE ACC, Washington, DC, USA, 2013, pp. 47244729.
    46. 46)
      • 24. Miao, X., Wu, B., Zou, Y., et al: ‘Examining the impact of different periodic functions on short-term freeway travel time prediction approaches’, J. Adv. Transp., 2020, 2020, pp. 115.
    47. 47)
      • 52. Wang, J., Deng, W., Guo, Y.: ‘New Bayesian combination method for short-term traffic flow forecasting’, Transp. Res. C Emerg. Technol., 2014, 43, pp. 7994.
    48. 48)
      • 53. Rui, F., Zuo, Z., Li, L.: ‘Using LSTM and GRU neural network methods for traffic flow prediction’. Proc of IEEE YAC, Wuhan, China, November 2017.
    49. 49)
      • 7. Gu, Y., Lu, W., Qin, L., et al: ‘Short-term prediction of lane-level traffic speeds: A fusion deep learning model’, Transp. Res. Part C Emerg. Technol., 2019, 106, pp. 116.
    50. 50)
      • 12. Lin, C., Wang, H., Yuan, J., et al: ‘Research on UUV obstacle avoiding method based on recurrent neural networks’, Complexity, 2019, 2019, pp. 116.
    51. 51)
      • 16. Lee, S., Fambro, D.: ‘Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting’, Transp. Res. Rec., J. Transp. Res. Board, 1999, 1678, pp. 179188.
    52. 52)
      • 43. Zhao, Z., Chen, W., Wu, X., et al: ‘LSTM network: a deep learning approach for short-term traffic forecast’, IET Intell. Transp. Syst., 2017, 11, (2), pp. 6875.
    53. 53)
      • 1. Zhang, J., Wang, F., Wang, K., et al: ‘Data-driven intelligent transportation systems: a survey’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (4), pp. 16241639.
    54. 54)
      • 40. Hochreiter, S., Schmidhuber, J.: ‘Long short-term memory’, Neural Comput., 1997, 9, (8), pp. 17351780.
    55. 55)
      • 28. Zhu, J.Z., Cao, J.X., Zhu, Y.: ‘Traffic volume forecasting based on radial basis function neural network with the consideration of traffic flows at the adjacent intersections’, Transp. Res. Part C Emerg. Technol., 2014, 47, pp. 139154.
    56. 56)
      • 38. Kolen, J. F., Kremer, S. C.: ‘Gradient flow in recurrent nets: the difficulty of learning LongTerm dependencies’, 2001, pp. 237243.
    57. 57)
      • 23. Yang, X., Zou, Y., Tang, J., et al: ‘Evaluation of short-term freeway speed prediction based on periodic analysis using statistical models and machine learning models’, J. Adv. Transp., 2020, 2020, pp. 116.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2020.0410
Loading

Related content

content/journals/10.1049/iet-its.2020.0410
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address