Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Real-time estimation and prediction of lateral stability of coaches: a hybrid approach based on EKF, BPNN, and online autoregressive integrated moving average algorithm

This study aimed to develop a coach state estimation and prediction system to enhance driving safety. Different from existing vehicle stability estimation studies, the authors propose a hybrid method to estimate and predict the state of a coach in real time. First, the vehicle sideslip angle and yaw rate are estimated by a three-degrees-of-freedom vehicle model combined with an extended Kalman filter (EKF) estimation algorithm. Then, a steering system is established that replaces the front-wheel angle with the steering wheel input torque. Next, a seven-degrees-of-freedom vehicle model analyses the effects of various driving influencing factors on the vehicle sideslip angle and the boundary of the stable region of the phase plane of the vehicle sideslip angle rate, and a boundary value parameter database is obtained. A back propagation neural network (BPNN) model is then established to obtain the boundary function parameter values under multifactor coupling conditions. Furthermore, an online prediction of the steering wheel input torque in a time series is done, and the prediction value is input to the steering system and neural network model. The effectiveness of the proposed method was evaluated via simulations based on MATLAB/Simulink and TruckSim software.

References

    1. 1)
      • 1. Jiang, K., Yang, D., Xie, S., et al: ‘Real-time estimation and prediction of tire forces using digital map for driving risk assessment’, Transp. Res. Part C-Emerging Technol., 2019, 107, pp. 463489.
    2. 2)
      • 22. Kim, D., Min, K., Kim, H., et al: ‘Vehicle sideslip angle estimation using deep ensemble-based adaptive kalman filter’, Mech. Syst. Signal Process., 2020, 144, p. 106862.
    3. 3)
      • 5. Hu, J.Q., Rakheja, S., Zhang, Y.M.: ‘Real-time estimation of tire-road friction coefficient based on lateral vehicle dynamics’, Proc. Inst. Mech. Eng. D, J. Automob. Eng., 2020, 234, (10–11), pp. 24442457.
    4. 4)
      • 26. Kim, J., Kim, Y.: ‘Development of active front wheel steering control system keeping stable region in driving phase diagram’, Int. J. Autom. Technol., 2014, 15, (7), pp. 11071117.
    5. 5)
      • 9. Inagaki, S., Kushiro, I., Yamamoto, M.: ‘Analysis on vehicle stability in critical cornering using phase-plane method’, JSAE Rev., 1995, 2, (16), p. 216.
    6. 6)
      • 8. De Martino, M., Farroni, F., Pasquino, N., et al: ‘Real-time estimation of the vehicle sideslip angle through regression based on principal component analysis and neural networks’. 2017 IEEE Int. Systems Engineering Symp. (ISSE), Vienna, Austria, 2017.
    7. 7)
      • 17. Zhang, J., Gu, P.: ‘Multi-layer control and simulation of the lateral stability on commercial vehicle’. Int. Conf. on Intelligent Human Machine Systems and Cybernetics, Hangzhou, China, 2019.
    8. 8)
      • 30. Liu, C., Hoi, S.C., Zhao, P., et al: ‘Online arima algorithms for time series prediction’. Thirtieth AAAI Conf. on Artificial Intelligence, Phoenix, Arizona USA, 2016.
    9. 9)
      • 20. Xing, Y., Lv, C., Wang, H., et al: ‘Driver lane change intention inference for intelligent vehicles: framework, survey, and challenges’, IEEE Trans. Veh. Technol., 2019, 68, (5), pp. 43774390.
    10. 10)
      • 19. Jermakian, J.S.: ‘Crash avoidance potential of four large truck technologies’, Accident Anal. Prev., 2012, 49, pp. 338346.
    11. 11)
      • 23. Wang, R., Ye, Q., Cai, Y., et al: ‘Analyzing the influence of automatic steering system on the trajectory tracking accuracy of intelligent vehicle’, Adv. Eng. Softw., 2018, 121, pp. 188196.
    12. 12)
      • 29. Chen, C., Liu, L., Qiu, T., et al: ‘Driver's intention identification and risk evaluation at intersections in the internet of vehicles’, IEEE Internet Things J., 2018, 5, (3), pp. 15751587.
    13. 13)
      • 2. Liao, Y.-W., Borrelli, F.: ‘An adaptive approach to real-time estimation of vehicle sideslip, road bank angles, and sensor bias’, IEEE Trans. Veh. Technol., 2019, 68, (8), pp. 74437454.
    14. 14)
      • 6. Chen, W., Tan, D., Zhao, L.: ‘Vehicle sideslip angle and road friction estimation using online gradient descent algorithm’, IEEE Trans. Veh. Technol., 2018, 67, (12), pp. 1147511485.
    15. 15)
      • 10. Sadri, S., Wu, C.: ‘Stability analysis of a nonlinear vehicle model in plane motion using the concept of lyapunov exponents’, Veh. Syst. Dyn., 2013, 51, (6), pp. 906924.
    16. 16)
      • 25. Bardawil, C., Talj, R., Francis, C., et al: ‘Integrated vehicle lateral stability control with different coordination strategies between active steering and differential braking’. 17th Int. IEEE Conf. on Intelligent Transportation Systems (ITSC), Qingdao, China, 2014.
    17. 17)
      • 27. Joa, E., Yi, K., Hyun, Y.: ‘Estimation of the tire slip angle under Various road conditions without tire–road information for vehicle stability control’, Control Eng. Pract., 2019, 86, pp. 129143.
    18. 18)
      • 4. Liu, W., Xiong, L., Xia, X., et al: ‘Vision-aided intelligent vehicle sideslip angle estimation based on a dynamic model’, IET Intell. Transp. Syst., 2020, 14, (10), pp. 11831189.
    19. 19)
      • 15. Sen, S., Chakraborty, S., Sutradhar, A.: ‘Estimation of vehicle yaw rate and lateral motion for dynamic stability control using unscented kalman filtering (ukf) approach’, 2015.
    20. 20)
      • 28. Hamad, K., Khalil, M.A., Shanableh, A.: ‘Modeling roadway traffic noise in a hot climate using artificial neural networks’, Transp. Res. D, Transp. Environ., 2017, 53, pp. 161177.
    21. 21)
      • 12. Yan, Y.-G., Xu, H.-G., Liu, H.-F.: ‘Estimating vehicle stability region based on energy function’, Discret. Dyn. Nat. Soc., 2015, 2015, p. 805063.
    22. 22)
      • 31. Zinkevich, M.: ‘Online convex programming and generalized infinitesimal gradient ascent’. Proc. of the 20th Int. Conf. on Machine Learning (ICML-03), Fort Lauderdale, Florida, USA, 2003.
    23. 23)
      • 21. Chindamo, D., Lenzo, B., Gadola, M.: ‘On the vehicle sideslip angle estimation: A literature review of methods, models, and innovations’, Appl. Sci., 2018, 8, (3), p. 355.
    24. 24)
      • 18. Medinaflintsch, A., Hickman, J.S., Guo, F., et al: ‘Benefit–cost analysis of lane departure warning and roll stability control in commercial vehicles’, J. Saf. Res., 2017, 62, pp. 7380.
    25. 25)
      • 24. Ye, Q., Wang, R., Cai, Y., et al: ‘The stability and accuracy analysis of automatic steering system with time delay’, ISA Trans., 2020, 104, pp. 278286.
    26. 26)
      • 3. Selmanaj, D., Corno, M., Panzani, G., et al: ‘Vehicle sideslip estimation: A kinematic based approach’, Control Eng. Pract., 2017, 67, pp. 112.
    27. 27)
      • 14. Sen, S., Chakraborty, S., Sutradhar, A.: ‘Estimation of tire slip-angles for vehicle stability control using kalman filtering approach’. 2015 Int. Conf. on Energy, Power and Environment: Towards Sustainable Growth (ICEPE), Shillong, India, 2015.
    28. 28)
      • 13. Yang, W., Wei, L., Liu, J.: ‘Co-simulation analysis of commercial vehicle lateral stability optimization control’, J. Mech. Eng., 2017, 53, (2), pp. 115123.
    29. 29)
      • 16. Reina, G., Messina, A.: ‘Vehicle dynamics estimation via augmented extended kalman filtering’, Measurement, 2019, 133, pp. 383395.
    30. 30)
      • 11. Farroni, F., Russo, M., Russo, R., et al: ‘A combined use of phase plane and handling diagram method to study the influence of tyre and vehicle characteristics on stability’, Veh. Syst. Dyn., 2013, 51, (8), pp. 12651285.
    31. 31)
      • 7. Han, S., Huh, K.: ‘Monitoring system design for lateral vehicle motion’, IEEE Trans. Veh. Technol., 2011, 60, (4), pp. 13941403.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2020.0385
Loading

Related content

content/journals/10.1049/iet-its.2020.0385
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address