access icon free Predictive kinetic energy management for an add-on driver assistance eco-driving of heavy vehicles

This study presents a radar-based predictive kinetic energy management (PKEM) framework that is applicable as an add-on driver assistance module for a heavy vehicle with an internal combustion engine powertrain. The proposed framework attempts to minimise fuel consumption by estimating the motion of the leading vehicle from radar information and optimising the inputs to the ego vehicle in a predictive manner. The PKEM framework consists of a driver-pedal pre-filter, an interacting multiple model radar-based filter and predictor of traffic object states, and a non-linear model predictive controller. The framework is integrated with established human-driver car-following models representing various driving styles and evaluated over a set of standardised driving cycles. The authors found that the energy-saving benefits can be as much as 23% over the baseline driver-only case with minimal compromises on travel time in urban environments, while the benefits are nearly negligible on the highway cycle. The results included also show the potential trade-offs in accommodating driver-desired inputs.

Inspec keywords: driver information systems; road traffic; optimisation; fuel economy; predictive control; power transmission (mechanical); road safety; road vehicles; automobiles; hybrid electric vehicles; energy consumption; internal combustion engines

Other keywords: driver-pedal pre-filter; radar-based predictive kinetic energy management framework; driver-desired inputs; predictive manner; PKEM framework; driver assistance eco-driving; interacting multiple model radar-based filter; internal combustion engine powertrain; standardised driving cycles; ego vehicle; leading vehicle; heavy vehicle; driving styles; established human-driver car-following models; nonlinear model predictive controller; baseline driver-only case; driver assistance module; radar information

Subjects: Engines; Optimal control; Traffic engineering computing; Mechanical drives and transmissions

References

    1. 1)
      • 2. US Energy Information Administration. ‘International Energy Outlook 2019’, 2019.
    2. 2)
      • 49. Mobileye. ‘Autonomous Driving&ADAS (Advanced Driver Assistance Systems), available at https://www.mobileye.com/.
    3. 3)
      • 51. Safe Drive Systems (SDS). ‘Collision Avoidance System & Fleet Management, available at https://safedrivesystems.com/.
    4. 4)
      • 33. Turri, V., Besselink, B., Johansson, K.H.: ‘Cooperative look-ahead control for fuel-efficient and safe heavy-duty vehicle platooning’, IEEE Trans. Control Syst. Technol., 2017, 25, (1), pp. 1228.
    5. 5)
      • 42. Treiber, M., Hennecke, A., Helbing, D.: ‘Congested traffic states in empirical observations and microscopic simulations’, 2000.
    6. 6)
      • 31. Tsugawa, S., Jeschke, S., Shladover, S.E.: ‘A review of truck platooning projects for energy savings’, IEEE Trans. Intell. Veh., 2016, 1, (1), pp. 6877.
    7. 7)
      • 5. U. S. Department of Transportation, Federal Motor Carrier Safety Administration. ‘Report to Congress on the Large Truck Crash Causation Study’, 2005.
    8. 8)
      • 14. Boriboonsomsin, K.: ‘Reducing the carbon footprint of freight movement through eco-driving programs for heavy-duty trucks’ (University of California at Riverside, USA, 2015).
    9. 9)
      • 32. McAuliffe, B., Lammert, M., Lu, X.Y., et al: ‘WCX World Congress Experience, Automotive and Commercial Vehicle Sector’. SAE International in United States, April 2018, DOI: https://doi.org/10.4271/2018-01-1181.
    10. 10)
      • 7. Naber, J.D.: ‘DOE APRA-E NEXTCAR program on connected and automated vehicles in collaboration with GM’, 2017.
    11. 11)
      • 24. Henriksson, M., Flardh, O., Martensson, J.: ‘Optimal speed trajectory for a heavy duty truck under varying requirements’. 2016 IEEE 19th Int. Conf. on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 2016, pp. 820825.
    12. 12)
      • 20. Naus, G.J.L., Ploeg, J., Van de Molengraft, M.J.G., et al: ‘Design and implementation of parameterized adaptive cruise control: an explicit model predictive control approach’, Control Eng. Pract., 2010, 18, (8), pp. 882892.
    13. 13)
      • 23. Lattemann, F., Neiss, K., Terwen, S., et al: ‘The predictive cruise control–a system to reduce fuel consumption of heavy duty trucks’, SAE Trans., 2004, 133, pp. 139146.
    14. 14)
      • 35. Du Toit, N.E., Burdick, J.W.: ‘Robot motion planning in dynamic, uncertain environments’, IEEE Trans. Robot., 2012, 28, (1), pp. 101115.
    15. 15)
      • 12. Sullman, M.J.M., Dorn, L., Niemi, P.: ‘Eco-driving training of professional bus drivers - does it work?’, Transp. Res. C, Emerg. Technol., 2015, 58, (PD), pp. 749759.
    16. 16)
      • 9. Zhai, C., Chen, X., Yan, C., et al: ‘Ecological cooperative adaptive cruise control for a heterogeneous platoon of heavy-duty vehicles with time delays’, IEEE Access, 2020, 8, pp. 146208146219.
    17. 17)
      • 37. Malinauskas, R.: ‘The intelligent driver model: analysis and application to adaptive cruise control’, 2014.
    18. 18)
      • 4. Díaz.Ramirez, J., Giraldo.Peralta, N., Flórez.Ceron, D., et al: ‘Eco-driving key factors that influence fuel consumption in heavy-truck fleets: a Colombian case’, Transp. Res. D, Transp. Environ., 2017, 56, pp. 258270.
    19. 19)
      • 10. Groelke, B.J.: ‘Inner-loop command governors for adaptive cruise control in heavy-duty trucks’, 2020.
    20. 20)
      • 17. Beusen, B., Broekx, S., Denys, T., et al: ‘Using on-board logging devices to study the longer-term impact of an eco-driving course’, Transp. Res. D, Transp. Environ., 2009, 14, (7), pp. 514520.
    21. 21)
      • 36. Sandberg, T.: ‘Heavy truck modeling for fuel consumption simulations and measurements’ (Linkoping University, Sweden, 2001).
    22. 22)
      • 41. Treiber, M., Kesting, A.: ‘The intelligent driver model with stochasticity-new insights into traffic flow oscillations’, Transp. Res. Procedia, 2017, 23, pp. 174187.
    23. 23)
      • 6. Barkenbus, J.N.: ‘Eco-driving: an overlooked climate change initiative’, Energy. Policy., 2010, 38, (2), pp. 762769.
    24. 24)
      • 28. Janssen, R., Zwijnenberg, H., Blankers, I., et al: ‘Truck platooning’, driving the, 2015.
    25. 25)
      • 30. Nowakowski, C., Shladover, S.E., Lu, X.Y., et al: ‘Cooperative adaptive cruise control (CACC) for truck platooning: operational concept alternatives’, 2015.
    26. 26)
      • 8. Borek, J., Groelke, B., Earnhardt, C., et al: ‘Optimal control of heavy-duty trucks in urban environments through fused model predictive control and adaptive cruise control’. 2019 American Control Conf. (ACC), Philadelphia, PA, 2019, pp. 46024607.
    27. 27)
      • 19. Sciarretta, A., De Nunzio, G., Ojeda, L.L.: ‘Optimal ecodriving control: energy-efficient driving of road vehicles as an optimal control problem’, IEEE Control Syst., 2015, 35, (5), pp. 7190.
    28. 28)
      • 21. Zhou, J., Peng, H.: ‘Range policy of adaptive cruise control for improved flow stability and string stability’. Conf. Proceeding - IEEE Int. Conf. on Networking, Sensing and Control, Taipei, Taiwan, vol. 1, 2004, pp. 595600.
    29. 29)
      • 25. Schwickart, T., Voos, H., Hadji.Minaglou, J.R., et al: ‘Design and simulation of a real-time implementable energy-efficient model-predictive cruise controller for electric vehicles’, J. Franklin Inst., 2015, 352, (2), pp. 603625.
    30. 30)
      • 50. Yoffie, D.B.: ‘Mobileye: the future of driverless cars’, 2014.
    31. 31)
      • 16. Liimatainen, H.: ‘Utilization of fuel consumption data in an ecodriving incentive system for heavy-duty vehicle drivers’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (4), pp. 10871095.
    32. 32)
      • 11. Yoon, D.D., Ayalew, B., Ivanco, A.: ‘Predictive kinetic energy management for large electric vehicles using radar information’. In: The Fourth IEEE Conf. on Control Technology and Applications (CCTA 2020), Montreal, Canada,24–26August 2020.
    33. 33)
      • 22. Zhang, J., Ioannou, P.: ‘Control of heavy-duty trucks: environmental and fuel economy considerations’, 2004.
    34. 34)
      • 48. U. S. Energy Information Administration. ‘Study of the potential energy consumption impacts of connected and automated vehicles’, 2017. Available at: www.eia.gov.
    35. 35)
      • 34. Ronghua, G., Guo, R., Qin, Z., et al: ‘Interacting multiple model particle-type filtering approaches to ground target tracking’, Article J. Comput., 2008, 3, (7), pp. 2330.
    36. 36)
      • 46. Weiskircher, T., Wang, Q., Ayalew, B.: ‘Predictive guidance and control framework for (semi-)autonomous vehicles in public traffic’, IEEE Trans. Control Syst. Technol., 2017, 25, (6), pp. 20342046. Available at http://ieeexplore.ieee.org/document/7820070/.
    37. 37)
      • 29. Van De Hoef, S., Johansson, K.H., Dimarogonas, D.V.: ‘Fuel-optimal centralized coordination of truck platooning based on shortest paths’. 2015 American Control Conf. (ACC), Chicago, IL, 2015, pp. 37403745.
    38. 38)
      • 18. Rolim, C., Baptista, P., Duarte, G., et al: ‘Quantification of the impacts of eco-driving training and real-time feedback on urban buses driver's behaviour’. In: ‘Transportation research procedia’, vol. 3 (Elsevier, Spain (Sevilla), 2014), pp. 7079.
    39. 39)
      • 47. Liu, Z., Tan, H., Kuang, X., et al: ‘The negative impact of vehicular intelligence on energy consumption’, J. Adv. Transp., 2019, 2019, p. 1521928. Available at: https://doi.org/10.1155/2019/1521928.
    40. 40)
      • 52. Samsara. ‘Driver Safety and Coaching Platform - Fleet Safety, available at https://www.samsara.com/fleet/safety/driver.
    41. 41)
      • 26. Asadi, B., Vahidi, A.: ‘Predictive cruise control: utilizing upcoming traffic signal information for improving fuel economy and reducing trip time’, IEEE Trans. Control Syst. Technol., 2011, 19, (3), pp. 707714.
    42. 42)
      • 13. Xu, Y., Li, H., Liu, H., et al: ‘Eco-driving for transit: an effective strategy to conserve fuel and emissions’, Appl. Energy, 2017, 194, pp. 784797.
    43. 43)
      • 38. Horiguchi, R., Oguchi, T.: ‘A study on car following models simulating various adaptive cruise control behaviors’, Int. J. Intell. Transp. Syst. Res., 2014, 12, (3), pp. 127134.
    44. 44)
      • 45. Ferreau, H.J.: ‘Model predictive control algorithms for applications with millisecond timescales’ (Arenberg Doctoral School of Science, Engineering & Technology, Faculty of Engineering, Department of Electrical Engineering, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium, 2011).
    45. 45)
      • 43. Gao, Y., Rakha, H., Abbas, M., et al: ‘Calibration and comparison of the VISSIM and INTEGRATION microscopic traffic simulation models’, 2008.
    46. 46)
      • 15. Zavalko, A.: ‘Applying energy approach in the evaluation of eco-driving skill and eco-driving training of truck drivers’, Transp. Res. D, Transp. Environ., 2018, 62, pp. 672684.
    47. 47)
      • 3. Walnum, H.J., Simonsen, M.: ‘Does driving behavior matter? An analysis of fuel consumption data from heavy-duty trucks’, Transp. Res. D, Transp. Environ., 2015, 36, pp. 107120.
    48. 48)
      • 27. Plum, T., Wegener, M., Eisenbarth, M., et al: ‘A simulation-based case study for powertrain efficiency improvement by automated driving functions’, Proc. Inst. Mech. Eng., D, J. Automob. Eng., 2019, 233, (5), pp. 13201330.
    49. 49)
      • 1. Bureau of Transportation Statistics. ‘Freight Analysis Framework, Version 4.1’, 2016.
    50. 50)
      • 44. Houska, B., Ferreau, H.J., Diehl, M.: ‘An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range’, Automatica, 2011, 47, (10), pp. 22792285.
    51. 51)
      • 39. Kesting, A., Treiber, M., Helbing, D.: ‘Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity’, Philos. Trans. Royal Society A, Math., Phys. Eng. Sci., 2010, 368, (1928), pp. 45854605.
    52. 52)
      • 40. Sultani, W., Choi, J.Y.: ‘Abnormal traffic detection using intelligent driver model’. 2010 20th Int. Conf. on Pattern Recognition, Istanbul, Turkey, 2010, pp. 324327.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2020.0380
Loading

Related content

content/journals/10.1049/iet-its.2020.0380
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading