access icon free Multi-model adaptive predictive control for path following of autonomous vehicles

The uncertainties in tire cornering stiffness can degrade the path following the performance of autonomous vehicles, especially in low adhesive conditions, to deal with this problem, a novel multi-model adaptive predictive control is proposed in this study. Firstly, a model predictive path following controller is designed based on a combined model of vehicle dynamics and road-related kinematics relationship. Then, to deal with the model uncertainties, the multiple model adaptive theory is introduced, and the recursive least adaptive law is proposed with its convergence proved by Lyapunov theory. Finally, the multiple-model adaptive law is combined with the proposed model predictive control by a convex polytope of tire cornering stiffness. In this way, the proposed algorithm can be adaptive to the uncertainties of tire cornering stiffness. Simulation results show the effectiveness and robustness of the proposed method to the uncertainties of the tire cornering stiffness resulting in an excellent performance in any road condition without introducing conservativeness.

Inspec keywords: Lyapunov methods; road vehicles; adhesion; vehicle dynamics; stability; predictive control; tyres; robust control; nonlinear control systems; time-varying systems; adaptive control

Other keywords: recursive least adaptive law; autonomous vehicles; tire cornering stiffness; multiple-model adaptive law; novel multimodel adaptive predictive control; model predictive control; low adhesive conditions; multiple model adaptive theory; model uncertainties; vehicle dynamics; model predictive path; road-related kinematics relationship

Subjects: Self-adjusting control systems; Nonlinear control systems; Vehicle mechanics; Stability in control theory; Optimal control

References

    1. 1)
      • 19. Zhang, H., Zhang, X., Wang, J.: ‘Robust gain-scheduling energy-to-peak control of vehicle lateral dynamics stabilisation’, Veh. Syst. Dyn., 2014, 52, (3), pp. 309340.
    2. 2)
      • 30. Zhai, L., Sun, T., Wang, J.: ‘Electronic stability control based on motor driving and braking torque distribution for a four in-wheel motor drive electric vehicle’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 47264739.
    3. 3)
      • 26. Rajamani, R.: ‘Vehicle dynamics and control’ (Springer Science, New York, USA, 2006).
    4. 4)
      • 29. Ioannou, P.: ‘Adaptive control tutorial (advances in design and control)’. Society for Industrial and Applied Mathematics, Philadelphia, USA, 2006.
    5. 5)
      • 12. Guo, H., Cap, D., Chen, H., et al: ‘Model predictive path following control for autonomous cars considering a measurable disturbance: implementation, testing, and verification’, Mech. Syst. Signal Proc., 2019, 118, pp. 4160.
    6. 6)
      • 27. Zengin, H., Zengin, N., Fidan, B., et al: ‘Blending based multiple-model adaptive control for multivariable systems and application to lateral vehicle dynamics’. 2019 18th European Control Conf. (ECC), Naples Italy, 2019, pp. 29572962.
    7. 7)
      • 18. Guo, K., Lu, D.: ‘Unitire: unified tire model for vehicle dynamic simulation’, Veh. Syst. Dyn., 2002, 45, (S1), pp. 7999.
    8. 8)
      • 4. Yuan, K., Shu, H., Huang, Y., et al: ‘Mixed local motion planning and tracking control framework for autonomous vehicles based on model predictive control’, IET Intell. Transp. Syst., 2019, 13, (6), pp. 950959.
    9. 9)
      • 28. Sierra, C., Tseng, E., Jain, A., et al: ‘Cornering stiffness estimation based on vehicle lateral dynamics’, Veh. Syst. Dyn., 2007, 44, (sup1), pp. 2438.
    10. 10)
      • 17. Nam, H., Choi, W., Ahn, C.: ‘Model predictive control for evasive steering of an autonomous vehicle’, Int. J. Autom. Technol., 2019, 20, (5), pp. 10331042.
    11. 11)
    12. 12)
      • 1. Anderson, M., Nidhi, K., Stanley, D., et al: ‘Autonomous vehicle technology: a guide for policymakers’, Rand Corp., RAND Corporation, Santa Monica, Calif, USA, 2014.
    13. 13)
      • 3. Huang, Y., Ding, H., Zhang, Y., et al: ‘A motion planning and tracking framework for autonomous vehicles based on artificial potential field elaborated resistance network approach’, IEEE Trans. Ind. Electron., 2020, 67, (2), pp. 13761386.
    14. 14)
      • 7. Hu, C., Wang, R., Yan, F.: ‘Integral sliding mode-based composite nonlinear feedback control for path following of four-wheel independently actuated autonomous vehicles’, IEEE Trans. Transp. Electrification, 2016, 2, (2), pp. 221230.
    15. 15)
      • 2. Talvala, R., Kritayakirana, K., Gerdes, C.: ‘Pushing the limits: from lanekeeping to autonomous racing’, Annu. Rev. Control., 2011, 35, (1), pp. 137148.
    16. 16)
      • 11. Huang, Y., Wang, H., Khajepour, A., et al: ‘A novel local motion planning framework for autonomous vehicles based on resistance network and model predictive control’, IEEE Trans. Veh. Technol., 2020, 69, (1), pp. 5566.
    17. 17)
      • 20. Guo, J., Luo, Y., Li, K., et al: ‘Coordinated path-following and direct yaw-moment control of autonomous electric vehicles with sideslip angle estimation’, Mech. Syst. Signal Proc., 2018, 105, pp. 183199.
    18. 18)
      • 9. Goodarzi, A., Sabooteh, A., Esmailzadeh, E.: ‘Automatic path control based on integrated steering and external yaw-moment control’, Proc. of the Inst. Mech. Eng., K: J. of Multi-Body Dyn., 2008, 222, (2), pp. 189200.
    19. 19)
      • 16. Ren, Y., Zheng, L., Khajepour, A.: ‘Integrated model predictive and torque vectoring control for path tracking of 4-wheel-driven autonomous vehicles’, IET Intell. Transp. Syst., 2019, 13, (1), pp. 98107.
    20. 20)
      • 10. Guo, H., Shen, C., Zhang, H., et al: ‘Simultaneous trajectory planning and tracking using an MPC method for cyber-physical systems: a case study of obstacle avoidance for an intelligent vehicle’, IEEE Trans. Ind. Inf., 2018, 14, (9), pp. 42734283.
    21. 21)
      • 13. Raffo, G. V., Gomes, G. K., Normey-Rico, J. E., et al: ‘A predictive controller for autonomous vehicle path tracking’, IEEE Trans. Intell. Transp. Syst., 2009, 10, (1), pp. 92102.
    22. 22)
      • 21. Hu, C., Jing, H., Wang, R., et al: ‘Robust H∞ output-feedback control for path following of autonomous ground vehicles’, Mech. Syst. Signal Process., 2015, 70/71, pp. 414427.
    23. 23)
      • 25. Suh, J., Chae, H., Yi, K.: ‘Stochastic model-predictive control for lane change decision of automated driving vehicles’, IEEE Trans. Veh. Technol., 2018, 67, (6), pp. 47714782.
    24. 24)
      • 15. Berntorp, K., Quirynen, R., Uno, T., et al: ‘Trajectory tracking for autonomous vehicles on varying road surfaces by friction-adaptive nonlinear model predictive control’, Veh. Syst. Dyn., 2020, 58, (5), pp. 705725.
    25. 25)
      • 14. Ji, J., Khajepour, A., Melek, W.W., et al: ‘Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints’, IEEE Trans. Veh. Technol., 2017, 66, (2), pp. 952964.
    26. 26)
      • 24. Gao, Y., Gray, A., Tseng, E., et al: ‘A tube-based robust nonlinear predictive control approach to semiautonomous ground vehicles’, Veh. Syst. Dyn., 2014, 52, (6), pp. 802823.
    27. 27)
      • 22. Guo, J., Wang, J., Hu, P., et al: ‘Robust guaranteed-cost path-following control for autonomous vehicles on unstructured roads’, Proc. Inst. Mech. Eng., D: J. Autom. Eng., 2017, 232, (7), pp. 896908.
    28. 28)
      • 5. Marino, R., Scalzi, S., Netto, M.: ‘Nested PID steering control for lane keeping in autonomous vehicles’, Control Eng. Pract., 2011, 19, (12), pp. 14591467.
    29. 29)
      • 23. Wang, R., Zhang, H., Wang, J.: ‘Linear parameter-varying controller design for four-wheel independently actuated electric ground vehicles with active steering systems’, IEEE Trans. Intell. Transp. Syst., 2014, 22, (4), pp. 12811296.
    30. 30)
      • 31. Liang, Y., Li, Y., Yu, Y., et al: ‘Integrated lateral control for 4WID/4WIS vehicle in high-speed condition considering the magnitude of steering’, Veh. Syst. Dyn., 2020, 58, (11), pp. 17111735.
    31. 31)
      • 6. Wang, W., Hsu, T., Wu, T.: ‘The improved pure pursuit algorithm for autonomous driving advanced system’. 2017 IEEE 10th Int. Workshop on Computational Intelligence and Applications (IWCIA), Hiroshima, 2017, pp. 3338.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2020.0357
Loading

Related content

content/journals/10.1049/iet-its.2020.0357
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading