access icon free Finite-time active shimmy control based on uncertain disturbance observer for electric vehicle with independent suspension

For attenuating the shimmy phenomenon appeared in an electric vehicle (EV) with independent suspension, this study proposes a finite-time active shimmy stability control method based on an uncertainty estimation observer. Firstly, a four-degree-of-freedoms shimmy model of an EV with independent suspension is constructed. Secondly, in order to deal with the uncertainties in the shimmy model, a finite-time control method via a non-linear uncertain disturbance observer is proposed. The direct Lyapunov function method is used to analyse the global stability of the closed-loop system, and the results show that the system outputs globally converge to zero. Simulation and hardware-in-the-loop simulation test results verify the built shimmy model and show the effectiveness of the designed control method compared with the sliding mode control method.

Inspec keywords: Lyapunov methods; vehicle dynamics; stability; observers; variable structure systems; uncertain systems; adaptive control; control system synthesis; robust control; suspensions (mechanical components); steering systems; nonlinear control systems; closed loop systems

Other keywords: EV; sliding mode control method; independent suspension; electric vehicle; shimmy phenomenon; time active shimmy control; hardware-in-the-loop simulation test results; finite-time active shimmy stability control method; uncertain disturbance observer; uncertainty estimation observer; built shimmy model; direct Lyapunov function method; four-degree-of-freedoms shimmy model; global stability; finite-time control method; designed control method

Subjects: Mechanical components; Nonlinear control systems; Multivariable control systems; Stability in control theory; Vehicle mechanics; Control system analysis and synthesis methods; Self-adjusting control systems; Control technology and theory (production)

References

    1. 1)
      • 6. He, L., Zhou, Y.: ‘Analysis of hopf bifurcation of steering wheel shimmy of automobile’, Appl. Mech. Mater., 2013, 344, pp. 6165.
    2. 2)
      • 9. Wang, W., Shen, Z., Song, Y.L., et al: ‘System dynamics of linkage mechanism with clearance and dry friction’, J. Vib. Shock, 2015, 34, (18), pp. 210214.
    3. 3)
      • 37. Cui, L., Wei, Y., Wang, Y.: ‘Finite-time trajectory tracking control for autonomous airships with uncertainties and external disturbances’, IET Intell. Transp. Syst., 2020, 14, (5), pp. 440448.
    4. 4)
      • 24. Polendo, J., Qian, C.: ‘An expanded method to robustly stabilize uncertain nonlinear systems’, Commun. Inf. Syst., 2008, 8, (1), pp. 5570.
    5. 5)
      • 17. Chen, C.C., Xu, S.D., Liang, Y.W.: ‘Study of nonlinear integral sliding mode fault-tolerant control’, IEEE/ASME Trans. Mechatronics, 2016, 21, (2), pp. 11601168.
    6. 6)
      • 15. Lin, C., Sun, S., Yi, J., et al: ‘Accelerated adaptive super twisting sliding mode observer-based drive shaft torque estimation for electric vehicle with automated manual transmission’, IET Intell. Transp. Syst., 2019, 13, (1, SI), pp. 160167.
    7. 7)
      • 8. Mi, T., Stepan, G., Takacs, D., et al: ‘Shimmy model for electric vehicle with independent suspensions’, Proc. Inst. Mech. Eng. D, J. Automob. Eng., 2018, 232, (3), pp. 330340.
    8. 8)
      • 29. Zhang, C., Yan, Y., Wen, C., et al: ‘A nonsmooth composite control design framework for nonlinear systems with mismatched disturbances: algorithms and experimental tests’, IEEE Trans. Ind. Electron., 2018, 65, (11), pp. 88288839.
    9. 9)
      • 2. Lin, Y., Li, S.: ‘Study on the bifurcation character of steering wheel self-excited shimmy of motor vehicle with dependent suspension’, Chin. J. Mech. Eng., 2004, 40, (12), pp. 187191.
    10. 10)
      • 11. Meng, Q., Qian, C., Shu, Y.: ‘Active steering wheel shimmy control for electric vehicle by sampled-data output feedback’, ISA Trans., 2019, 84, pp. 262270.
    11. 11)
      • 33. Meng, Q., Zhao, T., Qian, C., et al: ‘Integrated stability control of afs and dyc for electric vehicle based on non-smooth control’, Int. J. Syst. Sci., 2018, 49, (7), pp. 15181528.
    12. 12)
      • 20. Mallik, A., Lu, J., Khaligh, A.: ‘Sliding mode control of single-phase interleaved totem-pole PFC for electric vehicle onboard chargers’, IEEE Trans. Veh. Technol., 2018, 67, (9), pp. 81008109.
    13. 13)
      • 36. Ji, X., Liu, Y., He, X., et al: ‘Interactive control paradigm based robust lateral stability controller design for autonomous automobile path tracking with uncertain disturbance: a dynamic game approach’, IEEE Trans. Veh. Technol., 2018, 67, (8), pp. 69066920.
    14. 14)
      • 34. Meng, Q., Qian, C., Sun, Z.Y.: ‘Finite-time stability control of an electric vehicle under tyre blowout’, Trans. Inst. Meas. Control, 2019, 41, (5), pp. 13951404.
    15. 15)
      • 7. Wei, D., Jiang, T., Chen, C., et al: ‘Hopf bifurcation character of an interactive vehicle-road shimmy system under bisectional road conditions’, Proc. Inst. Mech. Eng. D, J. Automob. Eng., 2017, 231, (3), pp. 405417.
    16. 16)
      • 12. Ding, S., Park, J.H., Chen, C.C.: ‘Second-order sliding mode controller design with output constraint’, Automatica, 2020, 112, p. 108704.
    17. 17)
      • 21. Han, K., Choi, M., Lee, B., et al: ‘Development of a traction control system using a special type of sliding mode controller for hybrid 4WD vehicles’, IEEE Trans. Veh. Technol., 2018, 67, (1), pp. 264274.
    18. 18)
      • 22. Bartolini, G., Pisano, A., Punta, E., et al: ‘Simplex sliding mode control for autonomous six-DOF vehicles with mono-directional actuators: robustness, stability, and implementation issues’, Int. J. Robust Nonlinear Control, 2019, 29, (3, SI), pp. 529549.
    19. 19)
      • 42. Chen, D., Gu, H., Liu, H.: ‘Active control for landing gear shimmy with bifurcation theories’, J. Vib. Shock, 2010, 29, (7), pp. 3842.
    20. 20)
      • 39. Hosseinzadeh, M., Yazdanpanah, M.J.: ‘Performance enhanced model reference adaptive control through switching non-quadratic Lyapunov functions’, Syst. Control Lett., 2015, 76, pp. 4755.
    21. 21)
      • 27. Sun, Z.Y., Shao, Y., Chen, C.C., et al: ‘Global output-feedback stabilization for stochastic nonlinear systems: a double-domination approach’, Int. J. Robust Nonlinear Control, 2018, 28, (15), pp. 46354646.
    22. 22)
      • 26. Du, H., Wen, G., Yu, X., et al: ‘Finite-time consensus of multiple nonholonomic chained-form systems based on recursive distributed observer’, Automatica, 2015, 62, (C), pp. 236242.
    23. 23)
      • 18. Ding, S., Liu, L., Zheng, W., et al: ‘Sliding mode direct yaw-moment control design for in-wheel electric vehicles’, IEEE Trans. Ind. Electron., 2017, 64, (8), pp. 67526762.
    24. 24)
      • 5. Li, S., Lin, Y.: ‘Study on the bifurcation character of steering wheel self-excited shimmy of motor vehicle’, Veh. Syst. Dyn., 2006, 44, (sup1), pp. 115128.
    25. 25)
      • 31. Wang, N., Qian, C., Sun, J.C., et al: ‘Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles’, IEEE Trans. Control Syst. Technol., 2016, 24, (4), pp. 14541462.
    26. 26)
      • 28. Sun, Z.Y., Shao, Y., Chen, C.C.: ‘Fast finite-time stability and its application in adaptive control of high-order nonlinear system’, Automatica, 2019, 106, pp. 339348.
    27. 27)
      • 30. Du, H., Jiang, C., Wen, G., et al: ‘Current sharing control for parallel DC-DC buck converters based on finite-time control technique’, IEEE Trans. Ind. Inf., 2019, 15, (4), pp. 21862198.
    28. 28)
      • 41. Wang, W., Song, Y., Li, G.: ‘Influence of independent suspension automotive steering clearance and Coulomb friction on hopf bifurcation characteristic’, J. Mech. Eng., 2011, 47, (2), pp. 130135.
    29. 29)
      • 14. Wang, Y., Wang, Z., Zhang, L., et al: ‘Lateral stability enhancement based on a novel sliding mode prediction control for a four-wheel-independently actuated electric vehicle’, IET Intell. Transp. Syst., 2019, 13, (1, SI), pp. 124133.
    30. 30)
      • 32. Liu, Y., Lan, Q., Qian, C., et al: ‘Universal finite-time observer design and adaptive frequency regulation of hydraulic turbine systems’, IET Control Theory Appl., 2016, 10, (4), pp. 363370.
    31. 31)
      • 35. Meng, Q., Sun, Z.Y., Li, Y.: ‘Finite-time controller design for four-wheel-steering of electric vehicle driven by four in-wheel motors’, Int. J. Control, Autom. Syst., 2018, 16, (4), pp. 18141823.
    32. 32)
      • 38. Zhou, W., Zhou, P., Wei, Y., et al: ‘Finite-time spatial path following control for a robotic underactuated airship’, IET Intell. Transp. Syst., 2020, 14, (5), pp. 449454.
    33. 33)
      • 25. Sun, Z.Y., Xue, L.R., Zhang, K.: ‘A new approach to finite-time adaptive stabilization of high-order uncertain nonlinear system’, Automatica, 2015, 58, pp. 6066.
    34. 34)
      • 13. Ding, S., Chen, W.H., Mei, K., et al: ‘Disturbance observer design for nonlinear systems represented by input-output models’, IEEE Trans. Ind. Electron., 2020, 67, (2), pp. 12221232.
    35. 35)
      • 3. Takács, D., Stépán, G.: ‘Experiments on quasiperiodic wheel shimmy’, J. Comput. Nonlinear Dyn., 2009, 4, (3), p. 031007.
    36. 36)
      • 23. Ferrara, A., Incremona, G.P., Regolin, E.: ‘Optimization-based adaptive sliding mode control with application to vehicle dynamics control’, Int. J. Robust Nonlinear Control, 2019, 29, (3, SI), pp. 550564.
    37. 37)
      • 16. Li, S., Wu, C., Sun, Z.: ‘Design and implementation of clutch control for automotive transmissions using terminal sliding mode control and uncertainty observer’, IEEE Trans. Veh. Technol., 2016, 65, (4), pp. 18901898.
    38. 38)
      • 19. Ding, S., Mei, K., Li, S.: ‘A new second-order sliding mode and its application to nonlinear constrained systems’, IEEE Trans. Autom. Control, 2019, 64, (6), pp. 25452552.
    39. 39)
      • 1. Kimura, T., Hanamura, Y., Takata, H., et al: ‘Analysis of steering shimmy accompanied by sprung mass vibration on light duty truck-fundamental mechanism’, JSAE Rev., 1996, 17, (3), pp. 301306.
    40. 40)
      • 40. Tao, G.: ‘Model reference adaptive control with l1+α tracking’, Int. J. Control, 1996, 64, (5), pp. 859870.
    41. 41)
      • 4. Wei, D., Xu, K., Jiang, Y., et al: ‘Hopf bifurcation characteristics of dual-front axle self-excited shimmy system for heavy truck considering dry friction’, Shock Vib., 2015, 2015, (1), pp. 120.
    42. 42)
      • 10. Dutta, S., Choi, S.B.: ‘Control of a shimmy vibration in vehicle steering system using a magneto-rheological damper’, J. Vib. Control, 2018, 24, (4), pp. 797807.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2020.0348
Loading

Related content

content/journals/10.1049/iet-its.2020.0348
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading