access icon free Coordinated control of steer-by-wire and brake-by-wire for autonomous emergency braking on split-μ roads

Autonomous emergency braking (AEB) is an active safety technology which aims to prevent collisions by operating harsh braking. When AEB is activated on split-μ roads, the yaw moment generated by the asymmetric braking forces will lead to losing control of the vehicle. In this study, a coordinated control scheme of steer-by-wire (SBW) and brake-by-wire (BBW) is developed to solve this problem. An anti-lock braking system is achieved by a sliding mode controller. Besides, two model predictive controllers based on a 7-degree-of-freedom vehicle dynamics model are proposed for different road adhesion conditions. According to the simulation results, the proposed scheme can maintain the stability of the vehicle and achieve a satisfying braking efficiency under various friction differences between the two-side wheels. At last, the experiments are also carried out to verify the effectiveness and the real-time performance of the proposed scheme on a hardware-in-loop bench of BBW and SBW.

Inspec keywords: wheels; braking; control system synthesis; variable structure systems; road vehicles; friction; road safety; stability; brakes; vehicle dynamics; steering systems; predictive control

Other keywords: harsh braking; active safety technology; different road adhesion conditions; coordinated control scheme; anti-lock braking system; brake-by-wire; model predictive controllers; satisfying braking efficiency; losing control; asymmetric braking forces; autonomous emergency; steer-by-wire; split-μ roads; 7-degree-of-freedom vehicle dynamics model; sliding mode controller; AEB

Subjects: Control technology and theory (production); Multivariable control systems; Optimal control; Control system analysis and synthesis methods; Vehicle mechanics; Mechanical components; Road-traffic system control

References

    1. 1)
      • 33. Liang, L., Li, X., Wang, X., et al: ‘Transient switching control strategy from regenerative braking to anti-lock braking with a semi-brake-by-wire system’, Veh. Syst. Dyn., 2016, 54, (2), pp. 231257.
    2. 2)
      • 5. Rosado, A.L., Chien, S., Li, L., et al: ‘Certainty and critical speed for decision making in tests of pedestrian automatic emergency braking systems’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (6), pp. 13581370.
    3. 3)
      • 7. Fildes, B., Keall, M., Bos, N., et al: ‘Effectiveness of low speed autonomous emergency braking in real-world rear-end crashes’, Accident Anal. Prev., 2015, 81, pp. 2429.
    4. 4)
      • 18. Wasim, M., Kashif, A., Awan, A.U., et al: ‘Predictive control for improving vehicle handling and stability’. 2016 Int. Conf. on Intelligent Systems Engineering (ICISE), Islamabad, Iran, 2016, pp. 236241.
    5. 5)
      • 15. Cheng, S., Li, L., Liu, C.-Z., et al: ‘Robust LMI-based H-infinite controller integrating AFS and DYC of autonomous vehicles with parametric uncertainties’, IEEE Trans. Syst. Man Cybern., Syst., 2020, 99, pp. 110.
    6. 6)
      • 22. Zhang, H., Wang, J.: ‘Vehicle lateral dynamics control through AFS/DYC and robust gain-scheduling approach’, IEEE Trans. Veh. Technol., 2016, 65, (1), pp. 489494.
    7. 7)
      • 20. Choi, J., Yi, K., Suh, J., et al: ‘Coordinated control of motor-driven power steering torque overlay and differential braking for emergency driving support’, IEEE Trans. Veh. Technol., 2014, 63, (2), pp. 566579.
    8. 8)
      • 25. Guo, J., Ping, H., Wang, R.: ‘Nonlinear coordinated steering and braking control of vision-based autonomous vehicles in emergency obstacle avoidance’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (11), pp. 32303240.
    9. 9)
      • 14. Mousavinejad, E., Han, Q.-L., Yang, F., et al: ‘Integrated control of ground vehicles dynamics via advanced terminal sliding mode control’, Veh. Syst. Dyn., 2017, 55, pp. 268294.
    10. 10)
      • 36. Wang, Y., Fujimoto, H., Hara, S.: ‘Driving force distribution and control for electric vehicles with four in-wheel-motors: a case study of acceleration on split-friction surfaces’, IEEE Trans. Ind. Electron., 2016, 64, (4), pp. 33803388.
    11. 11)
      • 12. Li, Z., Sun, T., Wang, J.: ‘Electronic stability control based on motor driving and braking torque distribution for a four in-wheel motor drive electric vehicle’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 47264739.
    12. 12)
      • 10. Kim, C.J., Mian, A.A., Kim, S.H., et al: ‘Performance evaluation of integrated control of direct yaw moment and slip ratio control for electric vehicle with rear in-wheel motors on split-mu road’, Int. J. Autom. Technol., 2015, 16, (6), pp. 939946.
    13. 13)
      • 34. Wang, X., Wang, W., Li, L., et al: ‘Adaptive control of DC motor servo system with application to vehicle active steering’, IEEE/ASME Trans. Mechatronics, 2019, 24, (3), pp. 10541063.
    14. 14)
      • 28. Liang, L., Yishi, L.U., Wang, R.R., et al: ‘A 3-dimentional dynamics control framework of vehicle lateral stability and rollover prevention via active braking with MPC’, IEEE Trans. Ind. Electron., 2017, 64, (4), pp. 33893401.
    15. 15)
      • 30. Pacejka, H.B.: ‘Tyre and vehicle dynamics’ (Elsevier Ltd., London, UK, 2005, 2nd edn.).
    16. 16)
      • 32. Doumiati, M., Victorino, A., Lechner, D., et al: ‘Observers for vehicle tyre/road forces estimation: experimental validation’, Veh. Syst. Dyn., 2010, 48, (11), pp. 13451378.
    17. 17)
      • 19. Milad, A., Saeid, K., Amir, K., et al: ‘Model predictive control of vehicle stability using coordinated active steering and differential brakes’, Mechatronics, 2017, 48, pp. 3041.
    18. 18)
      • 2. Cheng, S., Li, L., Guo, H., et al: ‘Longitudinal collision avoidance and lateral stability adaptive control system based on MPC of autonomous vehicles’, IEEE Trans. Intell. Transp. Syst., 2020, 21, (6), pp. 23762385.
    19. 19)
      • 26. Jing, H., Wang, R., Wang, J., et al: ‘Robust H∞ dynamic output-feedback control for four-wheel independently actuated electric ground vehicles through integrated AFS/DYC’, J. Franklin Inst., 2018, 355, pp. 93219350.
    20. 20)
      • 17. Ren, B., Chen, H., Zhao, H., et al: ‘MPC-based yaw stability control in in-wheel-motored EV via active front steering and motor torque distribution’, Mechatronics, 2017, 38, pp. 103114.
    21. 21)
      • 1. Guo, H., Shen, C., Zhang, H., et al: ‘Simultaneous trajectory planning and tracking using an MPC method for cyber-physical systems: a case study of obstacle avoidance for an intelligent vehicle’, IEEE Trans. Ind. Inf., 2018, 14, pp. 42734283.
    22. 22)
      • 3. Chipengo, U.: ‘Full physics simulation study of guardrail radar-returns for 77 GHz automotive radar systems’, IEEE Access, 2018, 6, pp. 7005370060.
    23. 23)
      • 4. Cicchino, J.B.: ‘Effectiveness of forward collision warning and autonomous emergency braking systems in reducing front-to-rear crash rates’, Accident Anal. Prev., 2017, 99, pp. 142152.
    24. 24)
      • 23. Mirzaeinejad, H., Mirzaei, M., Kazemi, R.: ‘Enhancement of vehicle braking performance on split- roads using optimal integrated control of steering and braking systems’, Proc. Inst. Mech. Eng. K, J. Multi-Body Dyn., 2016, 230, (4), pp. 401415.
    25. 25)
      • 8. Li, Y., Lv, C., Zhang, J., et al: ‘High-precision modulation of a safety-critical cyber-physical system: control synthesis and experimental validation’, IEEE/ASME Trans. Mechatronics, 2018, 23, (6), pp. 25992608.
    26. 26)
      • 13. Guo, J., Luo, Y., Li, K., et al: ‘Coordinated path-following and direct yaw-moment control of autonomous electric vehicles with sideslip angle estimation’, Mech. Syst. Signal Process., 2018, 105, pp. 183199.
    27. 27)
      • 27. Li, C., Jing, H., Wang, R., et al: ‘Vehicle lateral motion regulation under unreliable communication links based on robust H∞ output-feedback control schema’, Mech. Syst. Signal Process., 2018, 104, pp. 171187.
    28. 28)
      • 6. Park, M.K., Lee, S.Y., Kwon, C.K., et al: ‘Design of pedestrian target selection with funnel map for pedestrian AEB system’, IEEE Trans. Veh. Technol., 2017, 66, (5), pp. 35973609.
    29. 29)
      • 29. Guo, H., Yin, Z., Cao, D., et al: ‘A review of estimation for vehicle tyre-road interactions toward automated driving’, IEEE Trans. Syst. Man Cybern., Syst., 2019, 49, (1), pp. 1430.
    30. 30)
      • 24. Mirzaei, M., Mirzaeinejad, H.: ‘Fuzzy scheduled optimal control of integrated vehicle braking and steering systems’, IEEE/ASME Trans. Mechatronics, 2017, 22, pp. 23692379.
    31. 31)
      • 35. Weichao, S., Jinhua, Z., Zhiyuan, L.: ‘Two-time-scale redesign for anti-lock braking systems of ground vehicles’, IEEE Trans. Ind. Electron., 2018, 66, (6), pp. 45774586.
    32. 32)
      • 21. Jing, Z., Wong, P.K., Ma, X., et al: ‘Chassis integrated control for active suspension, active front steering and direct yaw moment systems using hierarchical strategy’, Veh. Syst. Dyn., 2017, 55, (1), pp. 72103.
    33. 33)
      • 9. Chelbi, N.E., Gingras, D., Sauvageau, C.: ‘Proposal of a new virtual evaluation approach of preventive safety applications and advanced driver assistance functions–application: AEB system’, IET Intell. Transp. Syst., 2018, 12, pp. 11481156.
    34. 34)
      • 11. Tagesson, K., Cole, D.: ‘Advanced emergency braking under split friction conditions and the influence of a destabilising steering wheel torque’, Veh. Syst. Dyn., 2017, 55, pp. 970994.
    35. 35)
      • 16. Hebden, R.G., Edwards, C., Spurgeon, S.K.: ‘Automotive steering control in a split-µ manoeuvre using an observer-based sliding mode controller’, Veh. Syst. Dyn., 2004, 41, (3), pp. 181202.
    36. 36)
      • 31. Kiencke, U., Nielsen, L.: ‘Automotive control systems’ (Springer, Berlin, Heidelberg, 2000).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2020.0184
Loading

Related content

content/journals/10.1049/iet-its.2020.0184
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading