Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Localisation algorithm for security access control in railway communications

With the dense deployment and wide applications of the Internet of Things in railway systems, the location-based security access control scheme is becoming increasingly important. In this study, the received signal strength (RSS) and channel state information (CSI) in railway communications are measured by AR9344 network interface card. Then, based on the measurement data, the authors propose trajectory-based, neural network-based (NN-based) and ray tracing-based (RT-based) localisation algorithms, serving for location-based security access control. Specifically, the trajectory-based algorithm combined with trajectory simulation, movement detection and dynamic time warping algorithms, realises passengers enter/exit pattern detection. The NN-based algorithm leverages back-propagation network (BPN) and constructs training sets with measurement-based RSS and CSI, finishing accurate localisation. Besides, they evaluate the algorithm performance under different layers of BPN. RT-based localisation algorithm combines measurement data and simulation analysis, leveraging simulated-based multiple-input multiple-output received power and delay spread to realise lightweight localisation. After evaluation, the RT-based algorithm can achieve the highest accuracy of localisation, up to 99.9% and is designed to be straightforward for integration with commercial access points and deployment to railway communications.

References

    1. 1)
      • 8. Lin, P., Li, Q., Fan, Q., et al: ‘A real-time location-based services system using WiFi fingerprinting algorithm for safety risk assessment of workers in tunnels’, Math. Probl. Eng., 2014, 2014, pp. 110.
    2. 2)
      • 14. Wielandt, S., Strycker, L.D.: ‘Indoor multipath assisted angle of arrival localization’, Sensors, 2017, 17, p. 2522.
    3. 3)
      • 27. Sola, J., Sevilla, J.: ‘Importance of input data normalization for the application of neural networks to complex industrial problems’, IEEE Trans. Nucl. Sci., 1997, 44, (3), pp. 14641468.
    4. 4)
      • 15. Liu, J., Wang, L., Guo, L., et al: ‘A research on CSI-based human motion detection in complex scenarios’. 2017 IEEE 19th Int. Conf. on e-Health Networking, Applications and Services (Healthcom), Dalian, People's Republic of China, 2017, pp. 16.
    5. 5)
      • 22. Lu, B., Zeng, Z., Wang, L., et al: ‘Confining Wi-Fi coverage: a crowdsourced method using physical layer information’. 2016 13th Annual IEEE Int. Conf. on Sensing, Communication, and Networking (SECON), London, UK, 2016, pp. 19.
    6. 6)
      • 30. Hur, S., Baek, S., Kim, B., et al: ‘Proposal on millimeter-wave channel modeling for 5G cellular system’, IEEE. J. Sel. Top. Signal Process., 2016, 10, (3), pp. 454469.
    7. 7)
      • 28. He, D., Ai, B., Guan, K., et al: ‘The design and applications of high-performance ray-tracing simulation platform for 5G and beyond wireless communications: a tutorial’, IEEE Commun. Surv. Tutor., 2019, 21, (1), pp. 1027.
    8. 8)
      • 12. Wölfle, G., Hoppe, R., Zimmermann, D., et al: ‘Enhanced localization technique within urban and indoor environments based on accurate and fast propagation models’, European Wireless, 2002.
    9. 9)
      • 25. Tsai, C.Y., Chou, S.Y., Lin, S.W., et al: ‘Location determination of mobile devices for an indoor WLAN application using a neural network’, Knowl. Inf. Syst., 2009, 20, (1), pp. 8193. Available at: https://doi.org/10.1007/s10115-008-0154-2.
    10. 10)
      • 7. He, S., Chan, S..G.: ‘Wi-Fi fingerprint-based indoor positioning: recent advances and comparisons’, IEEE Commun. Surv. Tutor., 2016, 18, (1), pp. 466490.
    11. 11)
      • 17. Wang, L., Ai, B., He, D., et al: ‘Channel characterisation in rural railway environment at 28 GHz’, IET Microw. Antennas Propag., 2019, 13, (8), pp. 10521059.
    12. 12)
      • 5. Lamas, F., Fernández, P., Caramés, T.M., et al: ‘Towards the internet of smart trains: a review on industrial iot-connected railways’, Sensors, 2017, 17, (6), p. 1457. Available at: https://www.mdpi.com/1424-8220/17/6/1457.
    13. 13)
      • 11. Triki, M., Slock, D.T.M., Rigal, V., et al: ‘Mobile terminal positioning via power delay profile fingerprinting: reproducible validation simulations’. IEEE Vehicular Technology Conf., Melbourne, Australia, 2006, pp. 15.
    14. 14)
      • 13. Maher, P.S., Malaney, R.A.: ‘A novel fingerprint location method using raytracing’. GLOBECOM 2009 – 2009 IEEE Global Telecommunications Conf., Honolulu, HI, USA, 2009, pp. 15.
    15. 15)
      • 31. Zàruba, G.V., Huber, M., Kamangar, F.A., et al: ‘Indoor location tracking using RSSI readings from a single Wi-Fi access point’, Wirel. Netw., 2007, 13, (2), pp. 221235. Available at: https://doi.org/10.1007/s11276-006-5064-1.
    16. 16)
      • 29. Samimi, M.K., Rappaport, T.S.: ‘3-D millimeter-wave statistical channel model for 5G wireless system design’, IEEE Trans. Microw. Theory Tech., 2016, 64, (7), pp. 22072225.
    17. 17)
      • 9. Chapre, Y., Ignjatović, A., Seneviratne, A., et al: ‘CSI-MIMO: an efficient Wi-Fi fingerprinting using channel state information with MIMO’, Pervasive Mob. Comput., 2015, 23, pp. 89103.
    18. 18)
      • 1. Wang, L., Ai, B., He, D., et al: ‘Vehicle-to-infrastructure channel characterization in urban environment at 28 GHz’, China Commun., 2019, 16, (2), pp. 3648.
    19. 19)
      • 3. Zhao, Z., Pang, Y., Chen, F., et al: ‘Improving user identification for WiFi networks using visible light based authentication’, 2017.
    20. 20)
      • 6. Bartram, D., Burrow, M., Yao, X.: ‘A computational intelligence approach to railway track intervention planning’, 2008, 86, pp. 163198.
    21. 21)
      • 19. Stuber, G.L., Barry, J.R., McLaughlin, S.W., et al: ‘Broadband MlMO-OFDM wireless communications’, Proc. IEEE, 2004, 92, pp. 271294.
    22. 22)
      • 18. Xie, Y., Li, Z., Li, M.: ‘Precise power delay profiling with commodity wifi’. Proc. of the 21st Annual Int. Conf. on Mobile Computing and Networking (MobiCom ’15), New York, NY, USA, 2015, pp. 5364. Available at: http://doi.acm.org/10.1145/2789168.2790124.
    23. 23)
      • 26. Dong, Z., Pei, M., He, Y., et al: ‘Vehicle type classification using unsupervised convolutional neural network’. 2014 22nd Int. Conf. on Pattern Recognition, Washington DC, USA, 2014, pp. 172177.
    24. 24)
      • 2. Guan, K., Li, G., Kürner, T., et al: ‘On millimeter wave and THz mobile radio channel for smart rail mobility’, IEEE Trans. Veh. Technol., 2017, 66, (7), pp. 56585674.
    25. 25)
      • 10. Wang, X., Gao, L., Mao, S.: ‘Biloc: bi-modal deep learning for indoor localization with commodity 5 GHz WiFi’, IEEE Access, 2017, 5, pp. 42094220.
    26. 26)
      • 24. Ericwong, W., Qi, Y.: ‘BP neural network-based effective fault localization’, Int. J. Softw. Eng. Knowl. Eng., 2011, 19, 573597.
    27. 27)
      • 23. Li, Z.H.Y., Lei, H.: ‘Survey of convolutional neural network’, Comput. Appl., 2016.
    28. 28)
      • 32. Degli.Esposti, V., Fuschini, F., Vitucci, E.M., et al: ‘Measurement and modelling of scattering from buildings’, IEEE Trans. Antennas Propag., 2007, 55, (1), pp. 143153.
    29. 29)
      • 21. Li, N., Guo, Y., Chen, Y.: ‘An effective tracking system based on Wi-Fi trajectory matching’. 2015 IEEE 9th Int. Conf. on Anti-Counterfeiting, Security, and Identification (ASID), Xiamen, People's Republic of China, 2015, pp. 162165.
    30. 30)
      • 33. Jaeckel, S., Raschkowski, L., Börner, K., et al: ‘QuaDRiGa: a 3-D multi-cell channel model with time evolution for enabling virtual field trials’, IEEE Trans. Antennas Propag., 2014, 62, (6), pp. 32423256.
    31. 31)
      • 20. Liu, X., Karimi, H.A.: ‘Location awareness through trajectory prediction’, Comput. Environ. Urban Syst., 2006, 30, (6), pp. 741756. Available at: http://www.sciencedirect.com/science/article/pii/S0198971506000160.
    32. 32)
      • 16. Xiao, J., Wu, K., Yi, Y., et al: ‘Pilot: passive device-free indoor localization using channel state information’. 2013 IEEE 33rd Int. Conf. on Distributed Computing Systems, Washington DC, USA, 2013, pp. 236245.
    33. 33)
      • 4. Lu, B., Wang, L., Liu, J., et al: ‘Lasa: location aware wireless security access control for IoT systems’, Mobile Netw. Appl., 2018, 24, pp. 748760.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2020.0065
Loading

Related content

content/journals/10.1049/iet-its.2020.0065
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address