access icon free Modelling and simulation of a new urban freight distribution system based on automatic van platooning and fixed split up locations

A new freight delivery system based on automated vans is presented. Vans travel in platoons, whose first vehicle is driven and the others are driverless, during large part of their delivery routes. Each platoon moves from the Urban Distribution Centre (UDC) to a dedicated location close to the city centre, where the platoon is split up. At the split up location, the driver gets off the first van and each van of the platoon, independently from the others, carries out the last part of its delivery route moving without any driver. Meanwhile, the driver moves to another split up location or to the UDC, where a driver is needed. After completing their deliveries, vans return to the same split up location and gather again in a platoon; a driver accesses the first vehicle, then the platoon returns to the UDC. A methodology to design the proposed transport system has been developed. The methodology comprises two routing algorithms to optimise: platoon routes from the UDC to split up locations; single van routes from split up locations to receivers and return; and a microsimulator to assess, heuristically, the number of vehicles needed to operate the system and the schedule of driver activities.

Inspec keywords: transportation; freight handling; goods distribution

Other keywords: urban freight distribution system; Urban Distribution Centre; vans return; transport system; vans travel; platoon routes; automatic van platooning; UDC; dedicated location close; delivery route; driver activities; platoon returns; deliveries; automated vans; freight delivery system; single van routes

Subjects: Systems theory applications in transportation; Goods distribution

References

    1. 1)
      • 26. Goldberg, D: ‘Genetic algorithms in search, optimization and machine learning’ (Addison-Wesley, Reading, MA, 1989).
    2. 2)
      • 2. ISPRA: ‘Qualità dell'ambiente urbano’, V rapporto ISPRA, 2009.
    3. 3)
      • 27. Ren, C.: ‘Applying genetic algorithm for capacitated vehicle routing problem’. Proc. 2nd Int. Conf. Electronic & Mechanical Engineering and Information Technology, EMEIT 2012, Shenyang, China, September 2012.
    4. 4)
      • 21. Zhu, S., Wang, D., Li, T.: ‘Data clustering with size constraints’, Knowl.-Based Syst., 2010, 23, (8), pp. 883889.
    5. 5)
      • 4. Schoemaker, J., Allen, J., Huschebek, M., et al: ‘Quantification of urban freight transport effects’ (BESTUFS Consortium, Karlsruhe, Germany, 2006).
    6. 6)
      • 20. Avanzini, P., Thuilot, B., Martinet, P.: ‘Manual convoying of automated urban vehicles relying on monocular vision’. 2012 Intelligent Vehicles Symp., Alcalá de Henares, Spain, 3–7 June 2012.
    7. 7)
      • 14. Alessandrini, A., Campagna, A., Delle Site, P., et al: ‘Automated vehicles and the rethinking of mobility and cities’, Transp. Res. Procedia, 2015, 5, pp. 145160.
    8. 8)
      • 8. Gonzalez-Feliu, J.: ‘Freight distribution systems with cross-docking: a multidisciplinary analysis’. J. Transp. Res. Forum, 2012, 51, (1), pp. 93109.
    9. 9)
      • 32. Keller, M., Hausberger, S., Samaras, C., et al: ‘Parametrization of fuel consumption and CO2 emissions of passenger cars and light commercial vehicles for modelling purposes’, JRC Scientific and Technical Reports, Publications Office of the European Union, Luxembourg, 2011.
    10. 10)
      • 15. Lohr website: CRISTAL project webpage: https://lohr.fr/new-mobilities/cristal/, accessed April 2020.
    11. 11)
      • 29. Zhu, K.Q.: ‘Population diversity in genetic algorithm for vehicle routing problem with time windows’. PhD thesis, National University of Singapore, 2003.
    12. 12)
      • 1. MDS: ‘European Commission: Study on Urban Freight Transport’, DG MOVE final report, 2012.
    13. 13)
      • 13. Cepolina, E.M., Farina, A.: ‘A new urban freight distribution scheme and an optimization methodology for reducing its overall cost’, Eur. Transp. Res. Rev., 2015, 7, (1), pp. 114.
    14. 14)
      • 25. Toth, P., Vigo, D.: ‘The vehicle routing problem’ (SIAM, Philadelphia, USA, 2012).
    15. 15)
      • 17. Stevens, A.: ‘Automated platooning’. Proc. IET Autonomous Vehicles Conf, Greenwhich, May 2015.
    16. 16)
      • 5. Dablanc, L.: ‘Goods transport in large european cities: difficult to organize, difficult to modernize’, Transp. Res. A, Policy Pract., 2007, 41, (3), pp. 280285.
    17. 17)
      • 18. Xia, Q., Gao, F., Duan, J., et al: ‘Decoupled H control of automated vehicular platoons with complex interaction topologies’, IET Intell. Transp. Syst., 2017, 11, (2), pp. 92101.
    18. 18)
      • 16. EIGSI website: VELUD project webpage: https://www.eigsi.fr/recherche/mobilite-intelligente/, accessed April 2020.
    19. 19)
      • 28. Zheng, Y., Zhang, G.: ‘A genetic algorithm for vehicle routing problem with forward and reverse logistics’. Proc. 10th Int. Conf. on Wireless Communications, Networking and Mobile Computing, WiCOM 2008, Dalian, China, October 2008.
    20. 20)
      • 22. Ho, W., Ho, G.T.S., Ji, P., et al: ‘A hybrid genetic algorithm for the multi-depot vehicle routing problem’, Eng. Appl. Artif. Intell., 2008, 21, pp. 548557.
    21. 21)
      • 24. Alké website: catalogue of electric vehicles, https://www.alke.it/cataloghi-veicoli-elettrici, accessed May 2020.
    22. 22)
      • 19. Gechter, F., Koukam, A., Debain, C., et al: ‘Platoon control algorithm evaluation: metrics, configurations, perturbations, and scenarios’, J. Test. Eval., 2020, 48, (2), pp. 14781504.
    23. 23)
      • 7. Crainic, T.G., Ricciardi, N., Storchi, G.: ‘Models for evaluating and planning city logistics systems’, Transp. Sci., 2009, 43, pp. 432454.
    24. 24)
      • 23. Crevier, B., Cordeau, J.F., Laporte, G.: ‘The multi-depot vehicle routing problem with inter-depot routes’, Eur. J. Oper. Res., 2007, 176, pp. 756773.
    25. 25)
      • 10. Kusumakar, R., Buning, L., Rieck, F., et al: ‘INTRALOG – intelligent autonomous truck applications in logistics; single and double articulated autonomous reward docking on DCs’, IET Intell. Transp. Syst., 2018, 12, (9), pp. 10451052.
    26. 26)
      • 3. Russo, F., Comi, A.: ‘City characteristics and urban goods movements: a way to environmental transportation system in a sustainable city’, Proc.-Soc. Behav. Sci., 2012, 39, pp. 6173.
    27. 27)
      • 6. Allen, J., Browne, M., Woodburn, A., et al: ‘The role of urban consolidation centres in sustainable freight transport’, Transp. Rev., 2012, 32, pp. 473490.
    28. 28)
      • 11. Martìnez-Diaz, M, Soriguera, F, Pèrez, I: ‘Autonomous driving: a bird's eye view’, IET Intell. Transp. Syst., 2019, 13, (4), pp. 563579.
    29. 29)
      • 12. Dell'Amico, M., Hadjidimitriou, N.: ‘Innovative logistics model and containers solution for efficient last mile delivery’, Procedia – Soc. Behav. Sci., 2012, 48, pp. 15051514.
    30. 30)
      • 31. Letnik, T., Farina, A., Mencinger, M., et al: ‘Dynamic management of loading bays for energy efficient urban freight deliveries’, Energy, 2018, 159, pp. 916928.
    31. 31)
      • 33. European Commission: ‘Directorate-general for regional and urban policy: ‘guide to cost-benefit analysis of investment projects’ (Publications Office of the European Union, Luxembourg, 2015).
    32. 32)
      • 30. Di Bugno, M., Guerra, S., Ambrosino, G., et al: ‘CEDM – centre for eco-friendly city freight distribution. Un approccio integrato alla city logistics’ (CEDM Consortium edition, Lucca), 2008.
    33. 33)
      • 9. TraMeS Consortium: ‘Trames – trasporto merci sostenibile. Sviluppo e applicazione di tecnologie intermodali e di procedure logistiche innovative’, TraMeS project brochure, 2013.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2019.0681
Loading

Related content

content/journals/10.1049/iet-its.2019.0681
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading