access icon free Utilising bidirectional inequality constraints in optimal robust control for heterogeneous vehicular platoons

This study investigates the robust control problem of a heterogeneous vehicular platoon subject to non-linear and (possibly fast) time-varying uncertainties. The uncertainties are induced by parameter variations and external disturbances. The bound of the uncertainty is described via a continuous function. Firstly, the platoon is modelled as a coupled uncertain dynamic system. To guarantee collision avoidance and compact formation performance, the bidirectional inequality constraints are established for the spacing error between adjacent vehicles. A mathematical transformation scheme is proposed to convert the bounded state into an unbounded one. Then, based on the Udwdia–Kalaba approach and Lyapunov stability theory, a constraint-following robust controller is designed. The controller renders the uniform boundedness and uniform ultimate boundedness performance of the unbounded state, which in turn guarantees the bidirectional restrictions for the spacing error. Moreover, an optimal design scheme for the tunable parameter of this controller is proposed to minimise a comprehensive index involving the system performance and control cost. Finally, numerical simulations are conducted to validate the efficiency of the proposed algorithm.

Inspec keywords: asymptotic stability; time-varying systems; stability; nonlinear control systems; control system synthesis; adaptive control; Lyapunov methods; robust control; collision avoidance; uncertain systems

Other keywords: heterogeneous vehicular platoon subject; uniform ultimate boundedness performances; continuous function; bidirectional restrictions; compact formation performance; collision avoidance; tunable parameter; bounded state; external disturbances; heterogeneous vehicular platoons; optimal design scheme; constraint-following robust controller; parameter variations; bidirectional inequality constraints; optimal robust control; robust control problem; mathematical transformation scheme; spacing error; system performance; control cost; nonlinear; coupled uncertain dynamic system; time-varying uncertainties; unbounded state; uniform boundedness

Subjects: Control system analysis and synthesis methods; Stability in control theory; Nonlinear control systems; Self-adjusting control systems

References

    1. 1)
      • 19. Bernardo, M., Salvi, A., Santini, S.: ‘Distributed consensus strategy for platooning of vehicles in the presence of time-varying heterogeneous communication delays’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (1), pp. 102112.
    2. 2)
      • 2. Gong, S., Shen, J., Du, L.: ‘Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon’, Transp. Res. B, Methodol., 2016, 94, pp. 314334.
    3. 3)
      • 6. Rahman, M., Abdel-Aty, M.: ‘Longitudinal safety evaluation of connected vehicles’ platooning on expressways’, Accident Anal. Prev., 2018, 117, pp. 381391.
    4. 4)
      • 9. Hult, R., Sancar, F.E., Jalalmaab, M., et al: ‘Design and experimental validation of a cooperative driving control architecture for the grand cooperative driving challenge 2016’, IEEE Trans. Intell. Transp. Syst., 2018, 19, (4), pp. 12901301.
    5. 5)
      • 32. Huang, Q., Chen, Y.H., Cheng, A.: ‘Adaptive robust control for fuzzy mechanical systems: constraint-following and redundancy in constraints’, IEEE Trans. Fuzzy Syst., 2016, 23, (4), pp. 11131126.
    6. 6)
      • 10. Bergenhem, A., Huang, Q., Robinson, T.: ‘Challenges of platooning on public motorways’. Proc. 17th Intelligent Transport Systems World Congress, Busan, South Korea, October 2010, pp. 112.
    7. 7)
      • 26. Canudas de Wit, C., Brogliato, B.: ‘Stability issues for vehicle platooning in automated highway systems’. Proc. IEEE Int. Conf. on Control Applications, Hawai'i, USA, August 1999, pp. 13771382.
    8. 8)
      • 34. Hua, L.: ‘Introduction to higher mathematics’ (Higher Education Press, Beijing, China, 2009).
    9. 9)
      • 23. Zhao, X., Chen, Y.H., Zhao, H.: ‘Robust approximate constraint-following control for autonomous vehicle platoon systems’, Asian J. Control, 2018, 20, (4), pp. 16111623.
    10. 10)
      • 22. Zhou, Y., Ahn, S.: ‘Robust local and string stability for a decentralized car following control strategy for connected automated vehicles’, Transp. Res. B, Methodol., 2019, 125, pp. 175196.
    11. 11)
      • 1. Guo, G., Yue, W.: ‘Hierarchical platoon control with heterogeneous information feedback’, IET Control Theory Applic., 2011, 5, (15), pp. 17661781.
    12. 12)
      • 33. Xu, J., Du, Y., Chen, Y.H., et al: ‘Optimal robust control design for constrained uncertain systems: a fuzzy-set theoretic approach’, IEEE Trans. Fuzzy Syst., 2016, 26, (6), pp. 34943505.
    13. 13)
      • 5. Bonnet, C., Fritz, H.: ‘Fuel consumption reduction in a platoon: experimental results with two electronically coupled trucks at close spacing’. SAE Tech. Paper, 2000.
    14. 14)
      • 16. Zheng, Y., Li, S.E., Li, K., et al: ‘Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies’, IEEE Trans. Control Syst. Technol., 2017, 25, (3), pp. 899901.
    15. 15)
      • 28. Jia, D., Ngoduy, D.: ‘Platoon based cooperative driving model with consideration of realistic inter-vehicle communication’, Transp. Res. C, Emerg. Technol., 2016, 68, pp. 245264.
    16. 16)
      • 4. Li, S.E., Zheng, Y., Li, K., et al: ‘Dynamical modeling and distributed control of connected and automated vehicles: challenges an opportunities’, IEEE Trans. Intell. Transp. Syst., 2017, 9, (3), pp. 4658.
    17. 17)
      • 31. Hale, J.K.: ‘Ordinary differential equations’ (Dover Publications, New York, USA, 2009).
    18. 18)
      • 17. Lu, L., Song, X., He, D., et al: ‘Stability and fuel economy of nonlinear vehicle platoons: a distributed economic MPC approach’. Proc. the 37th Chinese Control Conf., Wuhan, China, July 2018, pp. 76787683.
    19. 19)
      • 3. Alam, A., Mårtensson, J., Johansson, K.: ‘Experimental evaluation of decentralized cooperative cruise control for heavy-duty vehicle platooning’, Control Eng. Pract., 2015, 38, pp. 1125.
    20. 20)
      • 27. Guo, G., Li, D.: ‘Adaptive sliding mode control of vehicular platoons with prescribed tracking performance’, IEEE Trans. Veh. Technol., 2019, 68, (8), pp. 75117520.
    21. 21)
      • 8. Shladover, S.E., Desoer, C.A., Hedrick, J., et al: ‘Automated vehicle control developments in the PATH program’, IEEE Trans. Veh. Technol., 1991, 40, (1), pp. 114130.
    22. 22)
      • 11. Tsugawa, S.: ‘An overview on an automated truck platoon within the energy ITS project’. Proc. The Int. Federation of Automatic Control, Tokyo, Japan, September 2013, pp. 4146.
    23. 23)
      • 14. Zheng, H., Wu, J., Wu, W., et al: ‘Cooperative distributed predictive control for collision-free vehicle platoons’, IET Intell. Transp. Syst., 2019, 13, (5), pp. 816824.
    24. 24)
      • 24. Yan, M., Song, J., Zuo, L., et al: ‘Neural adaptive sliding-mode control of a vehicle platoon using output feedback’, Energies, 2017, 10, (11), pp. 117.
    25. 25)
      • 30. Croless, M.J., Leitmann, G.: ‘Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems’, IEEE Trans. Autom. Control, 1981, 26, (5), pp. 11391144.
    26. 26)
      • 15. Wang, J., Gong, S., Peeta, S., et al: ‘A real-time deployable model predictive control-based cooperative platooning approach for connected and autonomous vehicles’, Transp. Res. B, Methodol., 2019, 128, pp. 271301.
    27. 27)
      • 25. Ferrara, A., Librino, R., Massola, A., et al: ‘Sliding mode control for urban vehicles platooning’. Proc. IEEE Intelligent Vehicles Symp., Eindhoven, The Netherlands, June 2008, pp. 877882.
    28. 28)
      • 7. Zhang, J., Zhou, Y., Liang, H.: ‘Effects of ACC and CACC vehicles on traffic flow based on an improved variable time headway spacing strategy’, IET Intell. Transp. Syst., 2019, 13, (9), pp. 13651373.
    29. 29)
      • 29. Chen, Y.H., Zhang, X.: ‘Adaptive robust approximate constraint-following control for mechanical systems’, J. Franklin Inst., 2010, 347, pp. 6986.
    30. 30)
      • 18. Shi, S., Lazar, M.: ‘On distributed model predictive control for vehicle platooning with a recursive feasibility guarantee’, IFAC PaperOnline, 2017, 50, (1), pp. 71937198.
    31. 31)
      • 20. Chehardoli, H., Homaeinezhad, M.R.: ‘Second-order decentralized safe consensus of inter-connected heterogeneous vehicular platoons’. Proc. 5th Int. Conf. on Control, Instrumentation, and Automation, Shiraz, Iran, 2017, pp. 290295.
    32. 32)
      • 21. Gao, F., Li, S.E., Zheng, Y., et al: ‘Robust control of heterogeneous vehicular platoon with uncertain dynamics and communication delay’, IET Intell. Transp. Syst., 2016, 10, (7), pp. 503513.
    33. 33)
      • 12. Huang, J., Huang, Q., Deng, Y., et al: ‘Toward robust vehicle platooning with bounded spacing error’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2017, 36, (4), pp. 562572.
    34. 34)
      • 13. Feng, S., Zhang, Y., Li, S.E., et al: ‘String stability for vehicular platoon control: definitions and analysis methods’, Annu. Rev. Control, 2019, 47, pp. 8197.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2019.0625
Loading

Related content

content/journals/10.1049/iet-its.2019.0625
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading