access icon free Low-cost bus seating information technology system

Public transport operators often struggle to provide a reliable and efficient transport service. A lack of comprehensive real-time operational data is often cited as a major cause for this state of things. In this study, the authors report on the design, implementation and testing of an Internet of Things-based system, named Bus Seating Information Technology system, which dynamically determines vehicle occupancy while the bus is in service. It uses an array of sensors for detecting events in the vehicle: infrared sensors ascertain whether passengers are entering or leaving the bus; force-sensitive resistors facilitate seat-occupancy detection; a Global Positioning System shield in conjunction with a Raspberry Pi microcomputer enables real-time tracking of the bus; and a USB camera connected to the same Raspberry Pi assist in cross-checking and validating the preceding information. The data collected is uploaded to an online IoT platform (thinger.io), through 3G or 4G if available, and can be visualised via an android app as well as through a desktop computer user interface. The planned functions of the system were tested in a 20-seater bus. Results showed that the system can track the vehicle location, as well as vehicle occupancy in real-time in most cases.

Inspec keywords: resistors; force sensors; Internet of Things; sensor arrays; force measurement; field buses; infrared detectors; computerised instrumentation; Global Positioning System; cameras; microcomputers

Other keywords: infrared sensors; force-sensitive resistors; 3G network; android app; desktop computer; bus seating information technology system; Global Positioning System; 4G network; public transport operators; USB camera; seat-occupancy detection; Internet of Things-based system; online IoT platform; Raspberry Pi microcomputer

Subjects: Microcomputers; Photodetectors; Resistors; Computer communications; Image sensors; Mechanical variables measurement; Instrumentation buses and protocols; Instrumentation buses; Computerised instrumentation; Microprocessors and microcomputers; Computerised instrumentation; Radionavigation and direction finding; Computer networks and techniques

References

    1. 1)
      • 22. Sterner, H., Aichholzer, W., Haselberger, M.: ‘Development of an antenna sensor for occupant detection in passenger transportation’, Procedia Eng., 2012, 47, pp. 178183.
    2. 2)
      • 18. Oransirikul, T., Nishide, R., Piumarta, I., et al: ‘Measuring bus passenger load by monitoring Wi-Fi transmissions from mobile devices’, Proc. Technol., 2014, 18, pp. 120125.
    3. 3)
      • 12. Liu, Y., Cheng, T.: ‘Understanding public transit patterns with open geodemographics to facilitate public transport planning’, Transportmetrica A: Transp. Sci., 2018, pp. 128.
    4. 4)
      • 21. Atayero, A.A., Ilori, A.O., Adedokun, M.O.: ‘Development of SeatSense: a wireless sensor network based seat detection system’. Proc. of the World Congress on Engineering and Computer Science 2015 Vol II, WCECS 2015, 21–23 October 2015, San Francisco, CA, USA.
    5. 5)
      • 31. Arduino software’. Available at: https://www.arduino.cc/en/Main/Software, accessed April 2020.
    6. 6)
      • 35. Kocher, L.: ‘The mobile revolution in public transport’, Available at: https://www.intelligenttransport.com/transport-articles/17365/the-mobile-revolution-in-public-transport/, accessed March 2020.
    7. 7)
      • 1. Cats, O., West, J., Eliasson, J.: ‘A dynamic stochastic model for evaluating congestion and crowding effects in transit systems’, Transp. Res. B, Methodol., 2016, 89, pp. 4357.
    8. 8)
      • 23. Chen, C.H., Chang, Y.C., Chen, T.Y., et al: ‘People counting system for getting In/out of a bus based on video processing’. 2008 Eighth Int. Conf. on Intelligent Systems Design and Applications, Kaohsiung, Taiwan, 2008, pp. 565569.
    9. 9)
      • 30. Raspberry Pi 3 model B’. Available at: https://www.raspberrypi.org/products/raspberry-pi-3-model-b/, accessed April 2020.
    10. 10)
      • 34. Beul-Leusmann, S., Samsel, C., Wiederhold, M., et al: ‘Usability evaluation of mobile passenger information systems’. Proc. of the Int. Conf. of Design, User Experience, and Usability, 2014, Cham.
    11. 11)
      • 7. Pelletier, M.P., Trépanier, M., Morency, C.: ‘Smart card data use in public transit: a literature review’, Transp. Res. C, Emerg. Technol., 2011, 19, (4), pp. 557568.
    12. 12)
      • 26. Verma, P., Bhatia, J.S.: ‘Design and development Of GPS-GSM based tracking system with google map based monitoring’, Int. J. Comput. Sci. Eng. Appl., 2013, 3, (3), pp. 33-40.
    13. 13)
      • 10. Zhao, J., Qu, S.Q., Zhang, F., et al: ‘Spatio-temporal analysis of passenger travel patterns in massive smart card data’, IEEE Trans. Intell. Transp. Syst., 18, 2017, pp. 31353146.
    14. 14)
      • 33. Automated passenger counting (APC) systems: how Do they work?Available at: https://www.liveabout.com/automated-passenger-counting-apc-2798822, accessed March 2020.
    15. 15)
      • 11. Trépanier, M., Morency, C.: ‘Assessing transit loyalty with smart card data’. Proc. of the 12th World Conf. on Transport Research, Lisbon, Portugal, 2010.
    16. 16)
      • 6. Harmony, X.J., Gayah, V.V.: ‘Evaluation of real-time transit information systems: an information demand and supply approach’, Int. J. Transp. Sci. Technol., 2017, 6, (1), pp. 8698.
    17. 17)
      • 14. Rakebrandt, A.: ‘Transit tracking: automatic passenger counting systems and tracking ridership’, Mass Transit, 2007, 33, (1), pp. 2834.
    18. 18)
      • 25. Tao, Y., Zhang, Y., Shao, D., et al: ‘Clustering method for counting passengers getting in a bus with single camera’, Opt. Eng., 2010, 49, (3), p. 037203.
    19. 19)
      • 19. Zeeman, A.S., Booysen, M.J., Ruggeri, G., et al: ‘Capacitive seat sensors for multiple occupancy detection using a low-cost setup’. IEEE Int. Conf. on Industrial Technology (ICIT), Cape Town, South Africa2013, pp. 12281233.
    20. 20)
      • 16. Hashimoto, K., Kawaguchi, T.C., Matsueda, S., et al: ‘People-counting system using multi-sensing application’, Sens. Actuators A, 1998, 66, pp. 5055.
    21. 21)
      • 29. Lita, I., Cioc, I.B., Visan, D.A.: ‘A new approach of automobile localization system using GPS and GSM/GPRS transmission’. Proc 29th Int. Spring Seminar on Electronics Technology, St. Marienthal, Germany, May 2006, pp. 115119.
    22. 22)
      • 15. Siemens: ‘Desiro city class 700’, Available at: https://www.siemens.co.uk/en/thameslink/desiro-city.htm.
    23. 23)
      • 9. Kieu, L.M., Bhaskar, A., Chung, E.: ‘A modified density based scanning algorithm with noise for spatial travel pattern analysis from smart card AFC data’, Transp. Res. Part C Emerg. Technol., 58, 2015, pp. 193207.
    24. 24)
      • 24. Liciotti, D., Cenci, A., Frontoni, E., et al: ‘An intelligent RGB-D video system for bus passenger counting’, in Chen, W., Hosoda, K., Menegatti, E., Shimizu, M., Wang, H. (Eds): vol. 531Intelligent autonomous systems 14. IAS 2016. Advances in intelligent systems and computing’ (Springer, Cham, 2017), pp. 573-484.
    25. 25)
      • 28. Fleischer, P.B., Nelson, A.Y., Sowah, R.A., et al: ‘Design and development of GPS/GSM based vehicle tracking and alert system for commercial inter-city buses’. Proc IEEE 4th Int. Conf. on Adaptive Science & Technology, Kumasi, Ghana, Oct. 2012, pp. 16.
    26. 26)
      • 17. Trépanier, M., Yamamoto, T.: ‘Workshop synthesis: system based passive data streams systems; smart cards, phone data, GPS’, Transp. Res. Procedia, 2015, 11, pp. 340349.
    27. 27)
      • 4. Essadeq, I., Dubail, E., Jeanniere, E.: ‘Modelling passenger congestion in transit system – benchmark and three case studies’, Transp. Res. Procedia, 2016, 14, pp. 17921801.
    28. 28)
      • 5. Boyle, D.: ‘Passenger counting systems’. Transit Cooperative Research Program, Synthesis Report 77, Washington, DC, 2008.
    29. 29)
      • 20. Nguyen, H.H., Gulati, R.K.N., Lee, Y.B.: ‘Real-time detection of seat occupancy and hogging’. IoT-App ‘15: Proc. of the 2015 Int. Workshop on Internet of Things towards Applications, Seoul, Korea, 1st November 2015, pp. 2934. Research Collection School of Information Systems, 2015.
    30. 30)
      • 3. Li, Z., Hensher, D.A.: ‘Crowding and public transport: a review of willingness to pay evidence and its relevance in project appraisal’, Transp. Policy, 2011, 18, (6), pp. 880887.
    31. 31)
      • 13. Baltes, M.R., Rey, J.R.: ‘The ‘ins and outs’ of APCs: an Overview of automatic passenger counters’, J. Public Transp., 1999, 2, (2), pp. 4764.
    32. 32)
      • 2. Hensher, D.A., Greene, W.H., Li, Z.: ‘Embedding risk attitude and decision weights in non-linear logit to accommodate time variability in the value of expected travel time savings’, Transp. Res. B, Methodol., 2011, 45, (7), pp. 954972.
    33. 33)
      • 27. El-Medany, W., Al-Omary, A., Al-Hakim, R., et al: ‘A cost effective real-time tracking system prototype using integrated GPS/GPRS module’. 2010 6th Int. Conf. on Wireless and Mobile Communications, Valencia, 2010, pp. 521525.
    34. 34)
      • 8. Dessouky, M., Hall, R., Nowroozi, A., et al: ‘Bus dispatching at timed transfer transit stations using bus tracking technology’, Transp. Res. C, Emerg. Technol., 7, 1999, pp. 187208.
    35. 35)
      • 32. Thinger.io platform’. Available at: https://thinger.io/, accessed April 2020.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2019.0529
Loading

Related content

content/journals/10.1049/iet-its.2019.0529
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading