access icon free Influence of wireless communication transport latencies and dropped packages on vehicle stability with an offsite steering controller

In recent years, advanced driver assistance systems (ADASs) have been used to improve the safety of vehicles by either providing additional information to the driver or by taking over complete control. The majority of ADASs currently being utilised run entirely on the vehicle, only having access to information provided by the sensors that are onboard the vehicle itself. Part of the next step in the evolution of ADAS is to incorporate information from other offsite sensors or obtain control inputs from infrastructure which can coordinate multiple vehicles simultaneously via a wireless interface. Wireless communication is inherently delayed and prone to dropped packets. This study looks at the effect of transport latencies and dropped packets on an off-site autoregressive steering controller supplying direct steering inputs to a vehicle. A fully non-linear vehicle simulation model is used to test the effect of delaying steering inputs and dropped packets to test the stability of the controller. The study shows that at dropped packet percentages of up to 40% adequate vehicle control is maintained, while transport latencies of up to 100 ms allow for moderately accurate vehicle control.

Inspec keywords: vehicle dynamics; road vehicles; radiocommunication; driver information systems; steering systems

Other keywords: nonlinear vehicle simulation model; dropped packet percentages; offsite sensors; adequate vehicle control; dropped packets; multiple vehicles; off-site autoregressive steering controller; control inputs; offsite steering controller; transport latencies; ADASs; wireless interface; moderately accurate vehicle control; advanced driver assistance systems; wireless communication transport latencies; direct steering inputs; vehicle stability

Subjects: Traffic engineering computing; Vehicle mechanics; Radio links and equipment

References

    1. 1)
      • 27. Van de Geer, S.A.: ‘High-dimensional generalized linear models and the lasso’, Annals of Stat., 2008, 36, (2), pp. 614645.
    2. 2)
      • 2. Sasaki, T., Miyata, T., Kawashima, K.: ‘Development of remote control system of construction machinery using pneumatic robot arm’. IEEE/RSJ, Sendai, Japan, 2004, pp. 748753.
    3. 3)
      • 39. Nair, V.G., Dileep, M.V., George, V.I.: ‘Aircraft yaw control system using LQR and fuzzy logic controller’, Int. J. Comput. Appl., 2012, 45, (9), pp. 2530.
    4. 4)
      • 41. Bakker, E., Pacejka, H.B., Lidner, L.: ‘A new tire model with an application in vehicle dynamics studies’, SAE Trans., 1989, pp. 101113.
    5. 5)
      • 9. Schreiber, V., Savitski, D., Augsburg, K., et al: ‘Advanced braking system control prototyping using networked hardware-In-the-loop technique’. Proc. of Eurobrake, Milan, Italy, 2016.
    6. 6)
      • 33. Hangos Katalin, M., Bokor, J., Szederkényi, G.: ‘Analysis and control of nonlinear process systems’ (Springer Science & Business Media, Boston, MA, 2006).
    7. 7)
      • 40. Uys, P.E., Els, P.S., Thoresson, M.J.: ‘Suspension settings for optimal ride comfort of off-road vehicles travelling on roads with different roughness and speeds’, J. Terramechanics, 2007, 1, pp. 163175.
    8. 8)
      • 23. Ye, F., Adams, M., Roy, S.: ‘V2V wireless communication protocol for rear-end collision avoidance on highways’. ICC Workshops-2008 IEEE Int. Conf. on Communications Workshops, ,Beijing, People's Republic of China, 2008, pp. 375379.
    9. 9)
      • 20. N-Streme and Nv2’: https://mum.mikrotik.com//presentations/IN12/soumil.pdf, accessed 18 November 2018.
    10. 10)
      • 3. Fenton, R.E.: ‘IVHS/AHS: driving into the future’, IEEE Control Syst. Mag., 1994, 14, (6), pp. 1320.
    11. 11)
      • 29. Triantafyllou, M.S., Hover, F.S.: ‘Maneuvering and control of marine vehicles’, Massachusetts of Institute of Technology, 2003, chapter 19, pp. 9298.
    12. 12)
      • 35. Alcala, E., Puig, V., Quevedo, J., et al: ‘Autonomous vehicle control using a kinematic Lyapunov-based technique with LQR-LMI tuning’, Control Eng. Pract., 2018, 73, pp. 112.
    13. 13)
      • 42. ISO.: ‘ISO3888-1: Passenger cars – Test track for a severe lane-change manoeuvre – Part 1: double lane-change’, The International Organisation for Standardisation, ISO, 1999.
    14. 14)
      • 25. Lopez-Aguilera, E., Casademont, J., Cotrina, J.: ‘Propagation delay influence in IEEE 802.11 outdoor networks’, Wirel. Netw., 2010, 16, (4), pp. 11231142.
    15. 15)
      • 21. Dey, K.C., Rayamajhi, A., Chowdhury, M., et al: ‘Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication in a heterogeneous wireless network–performance evaluation’, Transp. Res. C, Emerg. Technol., 2016, 68, pp. 168184.
    16. 16)
      • 17. Jiang, D., Delgrossi, L.: ‘IEEE 802.11 p: towards an international standard for wireless access in vehicular environments’. Vehicular Technology Conf. VTC Spring, 2008, pp. 20362040.
    17. 17)
      • 10. Ersal, T., Stein, J.L., Brudnak, M., et al: ‘Development of an internet-distributed hardware-In-the-loop simulation’. Proc. of the ASME Dynamic Systems and Control Conf., 2009, Hollywood, CA, USA, 2009.
    18. 18)
      • 26. Thoresson, M. J., Botha, T. R., Els, P.S.: ‘The relationship between vehicle yaw acceleration response and steering velocity for steering control’, Int. J. Veh. Des., 2014, 64, (2–4), pp. 195213.
    19. 19)
      • 1. National Highway Traffic Safety Administration, NHTSA’.: https://www.nhtsa.gov/press-releases/us-dot-and-iihs-announce-historic-commitment-20-automakers-make-automatic-emergency, accessed 27 March 2017.
    20. 20)
      • 37. Friedland, B.: ‘Control system design: an introduction to state-space methods’ (Courier Corporation, Chelmsford, MA, 2012).
    21. 21)
      • 13. Tandon, A., Brudnak, M.J., Stein, J.L., et al: ‘An observer based framework to improve fidelity in internet-distributed hardware-in-the-loop simulations’. ASME Dynamic Systems and Control Conf., Palo Alto, CA, USA, 2013.
    22. 22)
      • 28. Botha, T.R.: ‘High speed autonomous off-road vehicle steering’, M-dissertation, 2011http://repository.up.ac.za/handle/2263/29665.
    23. 23)
      • 18. Khairnar, V.D., Kotecha, K.: ‘Performance of vehicle-to-vehicle communication using IEEE 802.11 p in vehicular ad-hoc network environment’, Int. J. Netw. Sec. Appl., 2013, 5, doi: 10.5121/ijnsa.2013.5212.
    24. 24)
      • 24. Kavitha, K.V.N., Bagubali, A., Shalini, L.: ‘V2 V wireless communication protocol for rear-end collision avoidance on highways with stringent propagation delay’. Int. Conf. on Advances in Recent Technologies in Communication and Computing, 2009, pp. 661663.
    25. 25)
      • 36. Erkol, H.O.: ‘Linear quadratic regulator design for position control of an inverted pendulum by grey wolf optimizer’, Int J. Adv. Comput. Sci. Appl., 2018, 9, doi: 10.14569/IJACSA.2018.090403.
    26. 26)
      • 6. Eidehall, A., Pohl, J., Gustafsson, F., et al: ‘Toward autonomous collision avoidance by steering’, IEEE Trans. Intell. Transp. Syst., 2007, 8, (1), pp. 8494.
    27. 27)
      • 12. Franchi, N., Fischer, G., Wiegel, R.: ‘Radio hardware in-the-loop emulation for testing vehicular communication systems’. IEEE 5th Int. Symp. on Wireless Vehicular Communications (WiVeC), Dresden, Germany, 2013.
    28. 28)
      • 30. Mashadi, B., Ahmadizadeh, P., Majidi, M.: ‘Integrated controller design for path following in autonomous vehicles’, No. 2011-01-1032. SAE Technical Paper, 2011.
    29. 29)
      • 7. Eidehall, A., Pohl, J., Gustafsson, F., Ekmark, J.: ‘Toward autonomous collision avoidance by steering’, IEEE Trans. Intell. Transp. Syst., 2007, 8, (1), pp. 8494.
    30. 30)
      • 34. Shaout, A., Jarrah, M.A., Al-Araji, H., et al: ‘A nonlinear optimal four wheels steering controller’. Proc. of the 43rd IEEE Midwest Symp. on Circuits and Systems (Cat. No. CH37144), 2000, vol. 3, pp. 14261429.
    31. 31)
      • 11. Kloc, M., Weigel, R., Koelpin, A.: ‘Making real-time hardware-in-the-loop testing of automotive electronic control units wireless’. Int. Conf. on Advanced Technologies for Communications (ATC), Hanoi, Vietnam, 2016.
    32. 32)
      • 8. Int. Conf. on Intelligent Robots and Systems (IROS), 2004, vol. 1, pp. 748753.
    33. 33)
      • 4. Colombo, A., Del Vecchio, D.: ‘Supervisory control of differentially flat systems based on abstraction’. 50th IEEE Conf. on Decision and Control and European Control Conf., Orlando, FL, USA, 2011, pp. 61346139.
    34. 34)
      • 5. Colombo, A., Del Vecchio, D.: ‘Least restrictive supervisors for intersection collision avoidance: a scheduling approach’, IEEE Trans. Autom. Control, 2014, 60, (6), pp. 15151527.
    35. 35)
      • 14. Delays in Control Systems’.: http://users.ece.utexas.edu/~buckman/H3.pdf., accessed 22 May 2017.
    36. 36)
      • 16. Ersal, T., Brudnak, M., Stein, J.L., et al: ‘Statistical transparency analysis in internet-distributed hardware-in-the-loop simulation’, IEEE/ASME Trans. Mechatronics, 2012, 17, (2), pp. 228238.
    37. 37)
      • 22. Cunha, F., Villas, L., Boukerche, A., et al: ‘Data communication in VANETs: protocols, applications and challenges’, Ad Hoc Netw., 2016, 44, pp. 90103.
    38. 38)
      • 32. Snider Jarrod, M.: ‘Automatic steering methods for autonomous automobile path tracking’, Robotics Institute, Pittsburgh, PA, USA, Tech. Rep. CMU-RITR-09-08, 2009.
    39. 39)
      • 15. Lawrence, D.A.: ‘Stability and transparency in bilateral teleoperation’, IEEE Trans. Robotics Autom., 1993, 9, (5), pp. 624637.
    40. 40)
      • 31. Soudbakhsh, D., Eskandarian, A.: ‘A collision avoidance steering controller using linear quadratic regulator’, No. 2010-01-0459. SAE Technical Paper, 2010.
    41. 41)
      • 38. Usta, M.A., Akyazi, Ö., Akpinar, A.S.: ‘Aircraft roll control system using LQR and fuzzy logic controller’. 2011 Int. Symp. on Innovations in Intelligent Systems and Applications, June 2011, pp. 223227.
    42. 42)
      • 19. Sjoberg, K., Uhlemann, E., Strom, E.G.: ‘How severe is the hidden terminal problem in VANETs when using CSMA and STDMA’. Vehicular Technology Conf. (VTC Fall), 2011, pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2019.0472
Loading

Related content

content/journals/10.1049/iet-its.2019.0472
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading