Your browser does not support JavaScript!

access icon free Advanced framework for microscopic and lane-level macroscopic traffic parameters estimation from UAV video

Unmanned aerial vehicle (UAV) is at the heart of modern traffic sensing research due to its advantages of low cost, high flexibility, and wide view range over traditional traffic sensors. Recently, increasing efforts in UAV-based traffic sensing have been made, and great progress has been achieved on the estimation of aggregated macroscopic traffic parameters. Compared to aggregated macroscopic traffic data, there has been extensive attention on higher-resolution traffic data such as microscopic traffic parameters and lane-level macroscopic traffic parameters since they can help deeply understand traffic patterns and individual vehicle behaviours. However, little existing research can automatically estimate microscopic traffic parameters and lane-level macroscopic traffic parameters using UAV videos with a moving background. In this study, an advanced framework is proposed to bridge the gap. Specifically, three functional modules consisting of multiple processing streams and the interconnections among them are carefully designed with the consideration of UAV video features and traffic flow characteristics. Experimental results on real-world UAV video data demonstrate promising performances of the framework in microscopic and lane-level macroscopic traffic parameters estimation. This research pushes off the boundaries of the applicability of UAVs and has an enormous potential to support advanced traffic sensing and management.


    1. 1)
      • 4. Coifman, B., McCord, M., Mishalani, R.G., et al: ‘Surface transportation surveillance from unmanned aerial vehicles’. Proc. of the 83rd Annual Meeting of the Transportation Research Board, Washington, DC, USA, 2004.
    2. 2)
      • 8. Ke, R., Lutin, J., Spears, J., et al: ‘A cost-effective framework for automated vehicle-pedestrian near-miss detection through onboard monocular vision’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 2017.
    3. 3)
      • 20. Ke, R.: ‘A novel framework for real-time traffic flow parameter estimation from aerial videos’. 2016.
    4. 4)
      • 14. Cao, X., Wu, C., Lan, J., et al: ‘Vehicle detection and motion analysis in low-altitude airborne video under urban environment’, IEEE Trans. Circuits Syst. Video Technol., 2011, 21, (10), pp. 15221533.
    5. 5)
      • 32. Gomaa, A., Abdelwahab, M.M., Abo-Zahhad, M.: ‘Real-time algorithm for simultaneous vehicle detection and tracking in aerial view videos’. 2018 IEEE 61st Int. Midwest Symp. on Circuits and Systems (MWSCAS), Windsor, Canada, 2018, pp. 222225.
    6. 6)
      • 41. Canny, J.: ‘A computational approach to edge detection’, IEEE Trans. Pattern Anal. Mach. Intell., 1986, PAMI-8, (6), pp. 679698.
    7. 7)
      • 19. Ke, R., Kim, S., Li, Z., et al: ‘Motion-vector clustering for traffic speed detection from UAV video’. 2015 IEEE First Int. Smart Cities Conf. (ISC2), Guadalajara, Mexico, 2015, pp. 15.
    8. 8)
      • 24. Li, J., Chen, S., Zhang, F., et al: ‘An adaptive framework for multi-vehicle ground speed estimation in airborne videos’, Remote Sens., 2019, 11, (10), p. 1241.
    9. 9)
      • 25. Barmpounakis, E.N., Vlahogianni, E.I., Golias, J.C., et al: ‘How accurate are small drones for measuring microscopic traffic parameters?’, Transp. Lett., 2019, 11, pp. 332340.
    10. 10)
      • 9. Ke, R., Pan, Z., Pu, Z., et al: ‘Roadway surveillance video camera calibration using standard shipping container’. 2017 Int. Smart Cities Conf. (ISC2), Wuxi, People's Republic of China, 2017, pp. 16.
    11. 11)
      • 13. Kaufmann, S., Kerner, B.S., Rehborn, H., et al: ‘Aerial observations of moving synchronized flow patterns in over-saturated city traffic’, Transp. Res. C, Emerg. Technol., 2018, 86, pp. 393406.
    12. 12)
      • 34. Li, J., Ye, D.H., Chung, T., et al: ‘Multi-target detection and tracking from a single camera in unmanned aerial vehicles (UAVs)’. 2016 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 2016, pp. 49924997.
    13. 13)
      • 43. Ester, M., Kriegel, H.-P., Sander, J., et al: ‘A density-based algorithm for discovering clusters in large spatial databases with noise’. Knowledge Discovery and Data Mining (KDD), Portland, OR, USA, 1996, pp. 226231.
    14. 14)
      • 10. McCord, M., Yang, Y., Jiang, Z., et al: ‘Estimating annual average daily traffic from satellite imagery and air photos: empirical results’, Transp. Res. Rec. J. Transp. Res. Board, 2003, 1855, pp. 136142.
    15. 15)
      • 35. Carletti, V., Greco, A., Saggese, A., et al: ‘Multi-object tracking by flying cameras based on a forward-backward interaction’, IEEE Access, 2018, 6, pp. 4390543919.
    16. 16)
      • 36. Du, D., Qi, Y., Yu, H., et al: ‘The unmanned aerial vehicle benchmark: object detection and tracking’. Proc. of the European Conf. on Computer Vision (ECCV), Munich, Germany, 2018, pp. 370386.
    17. 17)
      • 39. Bewley, A., Ge, Z., Ott, L., et al: ‘Simple online and realtime tracking’. 2016 IEEE Int. Conf. on Image Processing (ICIP), Phoenix, AZ, USA, 2016, pp. 34643468.
    18. 18)
      • 31. Breckon, T.P., Barnes, S.E., Eichner, M.L., et al: ‘Autonomous real-time vehicle detection from a medium-level UAV’. Proc. 24th Int. Conf. on Unmanned Air Vehicle Systems, Bristol, UK, 2009, pp. 2129.
    19. 19)
      • 11. Salvo, G., Caruso, L., Scordo, A.: ‘Urban traffic analysis through an UAV’, Proc. Soc. Behav. Sci., 2014, 111, pp. 10831091.
    20. 20)
      • 37. Khan, M., Ectors, W., Bellemans, T., et al: ‘Unmanned aerial vehicle-based traffic analysis: a case study for shockwave identification and flow parameters estimation at signalized intersections’, Remote Sens., 2018, 10, (3), p. 458.
    21. 21)
      • 29. Rodríguez-Canosa, G.R., Thomas, S., Del Cerro, J., et al: ‘A real-time method to detect and track moving objects (DATMO) from unmanned aerial vehicles (UAVs) using a single camera’, Remote Sens., 2012, 4, (4), pp. 10901111.
    22. 22)
      • 21. Ke, R., Li, Z., Kim, S., et al: ‘Real-time bidirectional traffic flow parameter estimation from aerial videos’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (4), pp. 890901.
    23. 23)
      • 6. Zhou, H., Kong, H., Wei, L., et al: ‘Efficient road detection and tracking for unmanned aerial vehicle’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (1), pp. 297309.
    24. 24)
      • 16. Xu, Y., Yu, G., Wu, X., et al: ‘An enhanced Viola-Jones vehicle detection method from unmanned aerial vehicles imagery’, IEEE Trans Intell. Transp. Syst., 2017, 18, (7), pp. 18451856.
    25. 25)
      • 40. Lucas, B.D., Kanade, T., et al: ‘An iterative image registration technique with an application to stereo vision’, 1981.
    26. 26)
      • 42. Duda, R.O., Hart, P.E.: ‘Use of the Hough transformation to detect lines and curves in pictures’, 1971.
    27. 27)
      • 7. Freeman, B.S., Al Matawah, J.A., Al Najjar, M., et al: ‘Vehicle stacking estimation at signalized intersections with unmanned aerial systems’, Int. J. Transp. Sci. Technol., 2019, 8, pp. 231249.
    28. 28)
      • 1. Barmpounakis, E.N., Vlahogianni, E.I., Golias, J.C.: ‘Unmanned aerial aircraft systems for transportation engineering: current practice and future challenges’, Int. J. Transp. Sci. Technol., 2016, 5, (3), pp. 111122.
    29. 29)
      • 23. Ke, R., Li, Z., Tang, J., et al: ‘Real-time traffic flow parameter estimation from UAV video based on ensemble classifier and optical flow’, IEEE Trans. Intell. Transp. Syst., 2018, 99, pp. 111.
    30. 30)
      • 26. Kim, E.-J., Park, H.-C., Ham, S.-W., et al: ‘Extracting vehicle trajectories using unmanned aerial vehicles in congested traffic conditions’, J. Adv. Transp., 2019, 2019, 16 pages.
    31. 31)
      • 27. Feng, S., Wang, X., Sun, H., et al: ‘A better understanding of long-range temporal dependence of traffic flow time series’, Phys. A Stat. Mech. Appl., 2018, 492, pp. 639650.
    32. 32)
      • 17. Shastry, A.C., Schowengerdt, R.A.: ‘Airborne video registration and traffic-flow parameter estimation’, IEEE Trans. Intell. Transp. Syst., 2005, 6, (4), pp. 391405.
    33. 33)
      • 5. Angel, A., Hickman, M., Mirchandani, P., et al: ‘Methods of analyzing traffic imagery collected from aerial platforms’, IEEE Trans. Intell. Transp. Syst., 2003, 4, (2), pp. 99107.
    34. 34)
      • 38. Zhu, J., Sun, K., Jia, S., et al: ‘Urban traffic density estimation based on ultrahigh-resolution UAV video and deep neural network’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2018, 11, (12), pp. 49684981.
    35. 35)
      • 12. Khan, M.A., Ectors, W., Bellemans, T., et al: ‘Unmanned aerial vehicle–based traffic analysis: methodological framework for automated multivehicle trajectory extraction’, Transp. Res. Rec. J. Transp. Res. Board, 2017, 2626, pp. 2533.
    36. 36)
      • 18. Cao, X., Gao, C., Lan, J., et al: ‘Ego motion guided particle filter for vehicle tracking in airborne videos’, Neurocomputing, 2014, 124, pp. 168177.
    37. 37)
      • 3. Du, Y., Zhao, C., Li, F., et al: ‘An open data platform for traffic parameters measurement via multirotor unmanned aerial vehicles video’, J. Adv. Transp., 2017, 2017, pp. 112.
    38. 38)
      • 2. Kanistras, K., Martins, G., Rutherford, M.J., et al: ‘Survey of unmanned aerial vehicles (UAVs) for traffic monitoring’, in Valavanis, Kimon P., Vachtsevanos, George J. (Eds.): ‘Handbook of unmanned aerial vehicles’ (Springer, USA2015), pp. 26432666.
    39. 39)
      • 33. Najiya, K.V, Archana, M.: ‘UAV video processing for traffic surveillance with enhanced vehicle detection’. 2018 Second Int. Conf. on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 2018, pp. 662668.
    40. 40)
      • 15. Ammour, N., Alhichri, H., Bazi, Y., et al: ‘Deep learning approach for car detection in UAV imagery’, Remote Sens., 2017, 9, (4), p. 312.
    41. 41)
      • 28. Teutsch, M., Krüger, W.: ‘Detection, segmentation, and tracking of moving objects in UAV videos’. 2012 IEEE Ninth Int. Conf. on Advanced Video and Signal-Based Surveillance, Beijing, people's Republic of China, 2012, pp. 313318.
    42. 42)
      • 22. Chen, P., Zeng, W., Yu, G., et al: ‘Surrogate safety analysis of pedestrian-vehicle conflict at intersections using unmanned aerial vehicle videos’, J. Adv. Transp., 2017, 2017, pp. 112.
    43. 43)
      • 30. Tsao, P., Ik, T.-U., Chen, G.-W., et al: ‘Stitching aerial images for vehicle positioning and tracking’. 2018 IEEE Int. Conf. on Data Mining Workshops (ICDMW), Singapore, 2018, pp. 616623.

Related content

This is a required field
Please enter a valid email address