access icon free Iterative learning of an unknown road path through cooperative driving of vehicles

This study proposes a method for a vehicle controller to learn human driving behaviours through iterative interactions. In particular, the vehicle controller and the human driver jointly control a vehicle along a path only known to the human driver. Through repeated cooperative driving, the vehicle controller estimates the hidden desired path of the driver by minimising the control input. Eventually, semi-autonomous driving is realised since the vehicle controller is able to automatically track the target path and release the human driver from the driving task. The iterative learning of the human target path on the basis of the proposed algorithm is in the spatial domain, and is effective in the presence of uncertain human driving speeds. The validity of the proposed method is proved by rigorous analysis and demonstrated by numerical simulations.

Inspec keywords: road safety; mobile robots; road vehicles; learning (artificial intelligence); road traffic; iterative methods

Other keywords: unknown road path; control input; uncertain human driving speeds; human target path; hidden desired path; driving task; vehicle controller; semiautonomous driving; human driver; iterative learning

Subjects: Mobile robots; Knowledge engineering techniques; Road-traffic system control; Computer vision and image processing techniques

References

    1. 1)
      • 26. Bai, Z., Cai, B., ShangGuan, W., et al: ‘Deep learning based motion planning for autonomous vehicle using spatiotemporal LSTM network’. 2018 Chinese Automation Congress (CAC), Xi'an, People's Republic of China, 2018, pp. 8994.
    2. 2)
      • 31. Jian, Y., Huang, D., Liu, J., et al: ‘High-precision tracking of piezoelectric actuator using iterative learning control and direct inverse compensation of hysteresis’, IEEE Trans. Ind. Electron., 2019, 66, (1), pp. 368377.
    3. 3)
      • 4. Cerone, V., Milanese, M., Regruto, D.: ‘Combined automatic lane-keeping and driver's steering through a 2-D of control strategy’, IEEE Trans. Control Syst. Technol., 2009, 17, (4), pp. 135142.
    4. 4)
      • 7. Saffarian, M., Winter, J.D., Happee, R.: ‘Automated driving: human factors issues and design solutions’, Proc. Hum. Factors Erg. Soc. Annual Meet., 2012, 56, (1), pp. 22962300.
    5. 5)
      • 16. Meschtscherjakov, A., McCall, R., Louveton, N., et al: ‘MADSAV: maintaining driving skills in semi-autonomous vehicles’. Adjunct Proc. of the 7th Int. Conf. on Automotive User Interfaces and Interactive Vehicular Applications. Automotive UI ‘15, Nottingham, UK, 2015, pp. 136139.
    6. 6)
      • 9. Saleh, L., Chevrel, P., Claveau, F., et al: ‘Shared steering control between a driver and an automation: stability in the presence of driver behavior uncertainty’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (2), pp. 974983.
    7. 7)
      • 13. Ercan, Z., Carvalho, A., Tseng, H.E., et al: ‘A predictive control framework for torque-based steering assistance to improve safety in highway driving’, Veh. Syst. Dyn., 2018, 56, (5), pp. 810831.
    8. 8)
      • 23. Mark, M., Abbink, D.A., Boer, E.R.: ‘Sharing control with haptics: seamless driver support from manual to automatic control’, Hum. Factors, 2012, 54, (5), pp. 786798.
    9. 9)
      • 6. Huang, M., Gao, W., Wang, Y., et al: ‘Data-driven shared steering control of semi-autonomous vehicles’, IEEE Trans. Hum.-Mach. Syst., 2019, 49, (4), pp. 112.
    10. 10)
      • 29. Yang, Y., Ma, L., Huang, D.: ‘Development and repetitive learning control of lower limb exoskeleton driven by electrohydraulic actuators’, IEEE Trans. Ind. Electron., 2017, 64, (5), pp. 41694178.
    11. 11)
      • 15. Ji, X., Yang, K., Na, X., et al: ‘Shared steering torque control for lane change assistance: A stochastic game-theoretic approach’, IEEE Trans. Ind. Electron., 2019, 66, (4), pp. 30933105.
    12. 12)
      • 2. Izquierdo Reyes, J., Ramirez Mendoza, R.A., Bustamante Bello, M.R., et al: ‘Advanced driver monitoring for assistance system (ADMAS)’, Int. J. Interact. Des. Manuf. (IJIDeM), 2018, 12, (1), pp. 187197.
    13. 13)
      • 17. Vasudevan, R., Shia, V., Gao, Y., et al: ‘Safe semi-autonomous control with enhanced driver modeling’. Proc. of the American Control Conf. (ACC), Montreal, Canada, 2012, pp. 28962903.
    14. 14)
      • 30. Chen, Y., Meng, T., Wang, Y., et al: ‘Iterative learning control of two-phase laminar flow interface in y-shaped microfluidic channel’, IEEE Trans. Control Syst. Technol., 2018, 27, (6), pp. 27432748.
    15. 15)
      • 35. Li, Y., Ganesh, G., Jarrassé, N., et al: ‘Force, impedance, and trajectory learning for contact tooling and haptic identification’, IEEE Trans. Robot., 2018, 34, (5), pp. 11701182.
    16. 16)
      • 18. Francesca, M.F., Sky, O.E., Syeda, S.R.: ‘Human’ problems in semi-autonomous vehicles: understanding drivers’ reactions to off-nominal scenarios’, Int. J. Hum.-Comput. Interact., 2019, 35, (11), pp. 956971.
    17. 17)
      • 32. Reina, G., Johnson, D., Underwood, J.: ‘Radar sensing for intelligent vehicles in urban environments’, Sensors, 2015, 15, (6), pp. 1466114678.
    18. 18)
      • 33. Hwang, H., Oh, S., Shin, J.: ‘Can gateway for fast vehicle to vehicle (V2V) communication’. 2015 Int. Conf. on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 2015, pp. 523525.
    19. 19)
      • 10. Gao, Y., Gray, A., Tseng, H.E., et al: ‘A tube-based robust nonlinear predictive control approach to semiautonomous ground vehicles’, Veh. Syst. Dyn., 2014, 52, (6), pp. 802823.
    20. 20)
      • 20. Flemisch, F., Heesen, M., Hesse, T., et al: ‘Towards a dynamic balance between humans and automation: authority, ability, responsibility and control in shared and cooperative control situations’, Cogn., Technol. Work, 2012, 14, (1), pp. 318.
    21. 21)
      • 27. Huang, D., Li, X., He, W., et al: ‘Iterative learning control for boundary tracking of uncertain nonlinear wave equations’, J. Franklin Inst., 2018, 355, (17), pp. 84418461.
    22. 22)
      • 1. Park, J., Iagnemma, K., Reimer, B.: ‘A user study of semi-autonomous and autonomous highway driving: an interactive simulation study’, IEEE Pervasive Comput., 2019, 18, (1), pp. 4958.
    23. 23)
      • 24. Yu, L., Shao, X., Wei, Y., et al: ‘Intelligent land-vehicle model transfer trajectory planning method based on deep reinforcement learning’, Sensors, 2018, 18, (9), pp. 122.
    24. 24)
      • 28. Li, Y., Ge, S.S.: ‘Force tracking control for motion synchronization in human-robot collaboration’, Robotica., 2016, 34, (6), pp. 12601281.
    25. 25)
      • 21. Katzourakis, D., Alirezaei, M., deWinter, J.C.F., et al: ‘Shared control for road departure prevention’. 2011 IEEE Int. Conf. on Systems, Man, and Cybernetics, Anchorage, USA, 2011, pp. 136139.
    26. 26)
      • 19. Tan, D., Chen, W., Wang, H., et al: ‘Shared control for lane departure prevention based on the safe envelope of steering wheel angle’, Control Eng. Pract., 2017, 64, pp. 1526.
    27. 27)
      • 25. Gu, W., Xu, X., Yang, J.: ‘Path following with supervised deep reinforcement learning’. 2017 4th IAPR Asian Conf. on Pattern Recognition (ACPR), Nanjing, People's Republic of China, 2017, pp. 448452.
    28. 28)
      • 34. Realmuto, J., Warrier, R.B., Devasia, S.: ‘Data-inferred personalized human-robot models for iterative collaborative output tracking’, J. Intell. Robot. Syst., 2018, 91, (2), pp. 137153.
    29. 29)
      • 8. Rajamani, R., Zhu, C.: ‘Semi-autonomous adaptive cruise control systems’, IEEE Trans. Veh. Technol., 2002, 51, (5), pp. 11861192.
    30. 30)
      • 12. Cole, D.J., Pick, A.J., Odhams, A.M.C.: ‘Predictive and linear quadratic methods for potential application to modelling driver steering control’, Veh. Syst. Dyn., 2006, 44, (3), pp. 259284.
    31. 31)
      • 3. Ariola, M., Tommasi, G.D., Tartaglione, G., et al: ‘Hybrid architecture for vehicle lateral collision avoidance’, IET Control Theory Appl., 2018, 12, (14), pp. 19411950.
    32. 32)
      • 14. Erlien, S.M., Fujita, S., Gerdes, J.C.: ‘Shared steering control using safe envelopes for obstacle avoidance and vehicle stability’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (2), pp. 441451.
    33. 33)
      • 5. Russell, H.E.B., Harbott, L.K., Nisky, I., et al: ‘Motor learning affects car-to-driver handover in automated vehicles’, Sci. Robot., 2016, 1, (1), pp. 19.
    34. 34)
      • 36. Xu, J.X., Huang, D.: ‘Spatial periodic adaptive control for rotary machine systems’, IEEE Trans. Autom. Control, 2008, 53, (10), pp. 24022408.
    35. 35)
      • 11. MacAdam, C.C.: ‘Application of an optimal preview control for simulation of closed-loop automobile driving’, IEEE Trans. Syst., Man, Cybern., 1981, 11, (6), pp. 393399.
    36. 36)
      • 22. Mars, F., Deroo, M., Hoc, J.: ‘Analysis of human-machine cooperation when driving with different degrees of haptic shared control’, IEEE Trans. Haptic, 2014, 7, (3), pp. 324333.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2019.0411
Loading

Related content

content/journals/10.1049/iet-its.2019.0411
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading