Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Location-based data delivery between vehicles and infrastructure

Multi-hop routing in vehicular ad-hoc networks (VANETs) and wireless sensor networks has attracted significant interest of researchers in the wireless ad-hoc networks community. Most multi-hop routing protocols in VANET are based around the idea of choosing the next destination, which will provide the shortest-delay to reach a destination. To ensure better monitoring and reporting of road condition information, this study proposes location-based data forwarding through roadside sensors using k-shortest path routing combined with Q-learning. Q-learning is used for exploration of the sensing field to determine those sensors which have a higher queuing delay during peak hours as well as those which have comparatively lower delays. The use of Q-learning for exploration (sans routing) enables faster convergence for the sensors as compared to those techniques which utilise naive Q-learning for shortest path routing. Secondly, multi-hop routing is being combined with source coding (Huffman and Arithmetic coding) to compress the data payload of packets. This has shown some promising results for the VANETs employing dedicated short-range communication.

References

    1. 1)
      • 29. Liang, L., Ye, H., Li, G.: ‘Toward intelligent vehicular networks: a machine learning framework’, IEEE IoT J., 2019, 6, (1), pp. 124135.
    2. 2)
      • 31. Gupta, P., Kumar, P. R.: ‘The capacity of wireless networks’, IEEE Trans. Inf. Theorem, 2000, 46, (2), pp. 388404.
    3. 3)
      • 19. Ghebleh, R.: ‘A comparative classification of information dissemination approaches in vehicular ad hoc networks from distinctive viewpoints: a survey’, Comput. Netw., 2018, 131, pp. 1537.
    4. 4)
      • 33. Amunategui, M., Roopaei, M.: ‘Monetizing machine learning’ (APress, New York, NY, USA, 2018, 1st edn.).
    5. 5)
      • 16. Wu, H., Fujimoto, R., Guensler, R., et al: ‘MDDV: a mobility-centric data dissemination algorithm for vehicular networks’. Proc. 1st ACM Int. Workshop Vehicle Ad Hoc Network, New York, NY, USA, October 2004, pp. 4756.
    6. 6)
      • 32. Scaglione, A., Servetto, A.: ‘On the interdependence of routing and data compression in MultiHop sensor networks’. Proc. 8th Int. Conf. Mobile Comp. and Network, Atlanta, USA, September 2002, pp. 140147.
    7. 7)
      • 28. Beyens, P., Peeters, M., Steenhaut, K., et al: ‘Routing with compression in wireless sensor networks: a Q-learning approach’. Proc. 5th European Workshop on Adap. Agents and Multi-Agent Systems, Paris, France, 2005.
    8. 8)
      • 3. IEEE Std. 802.11p: ‘IEEE standard for information technology telecommunications and information exchange between systems local and metropolitan area networks specific requirements; part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications; amendment 6: wireless access in vehicular environments’, 2010.
    9. 9)
      • 37. Gersho, A., Gray, R. M.: ‘Vector quantization and signal compression’ (Kluwer Academic Publishers, Boston, MA, USA, 1992, 1st edn.).
    10. 10)
      • 24. Kumar, S., Miikkulainen, R.: ‘Dual reinforcement Q-routing: an on-line adaptive routing algorithm’. Proc. Artificial Neural Network in Engineering Conf., St. Louis, MI, USA, 1997.
    11. 11)
      • 14. Ding, Y., Wang, C., Xiao, L.: ‘A static-node assisted adaptive routing protocol in vehicular networks’. Proc. 4th ACM Workshop on VANETs, Montreal, QC, Canada, September 2007, pp. 5968.
    12. 12)
      • 35. Camp, T., Boleng, J., Davies, V.: ‘A survey of mobility models for Ad hoc network research’, Wirel. Commun. and Mob. Comput.: Sp. Issue on Mobile Ad Hoc Net: Research, Trends and Appl., 2002, 2, pp. 483502.
    13. 13)
      • 20. Boyan, J. A., Littman, M. L.: ‘Packet routing in dynamically changing networks: a reinforcement learning approach’. Proc. 6th Int. Conf. Neural Info. Proc. Sys., Denver, CO, USA, November 1993, pp. 671678.
    14. 14)
      • 36. Carter, A.: ‘The Status of vehicle-to-vehicle communication as a means of improving crash prevention performance rep. 05-0264’ (US Department Trans., Nat. High. Traffic Safety Admin. Tech., Washington, DC, USA, 2005), pp. 15.
    15. 15)
      • 4. Cailean, A. M., Cagneau, B., Chassagne, L., et al: ‘A survey on the usage of DSRC and VLC in communication-based vehicle safety applications’. IEEE 21st Symp. on Communication and Vehicular Technology in the Benelux (SCVT), Delft, Netherlands, November 2014, pp. 6974.
    16. 16)
      • 25. Wang, P., Wang, T.: ‘Adaptive routing for sensor networks using reinforcement learning’. Proc. 6th IEEE Int. Conf. Comp. and Info. Tech., Seoul, South Korea, September 2006, p. 219.
    17. 17)
      • 34. Yen, J. Y.: ‘Finding the K shortest loopless paths in a network’, Manage. Sci., 1971, 17, (11), pp. 712716.
    18. 18)
      • 9. Papathanassiou, A., Khoryaev, A.: ‘Cellular V2X as the essential enabler of superior global connected transportation services’, IEEE 5G Technol. Focus, 2017, 1, (2), pp. 14.
    19. 19)
      • 5. DOT: ‘Status of the dedicated short-range communications technology and applications report FHWA-JPO-15-218’. U.S. Department Trans. John A. Volpe Nat. Trans. Sys. Centre, 2015, pp. 15.
    20. 20)
      • 26. Förster, A., Murphy, A. L.: ‘Balancing energy expenditure in WSNs through reinforcement learning: a study’. Proc. 1st Int. Workshop Energy in Wirel. Sensor Net., Santorini, Greece, December 2008, pp. 17.
    21. 21)
      • 2. DOT: ‘Vehicle safety communications project final report HS-810-591’. U.S. Department Trans. Nat. Highway Traffic Safety Admin., Washington, DC, USA, 2006, pp. 110.
    22. 22)
      • 7. Kenney, J.B.: ‘Dedicated short-range communications (DSRC) standards in the United States’, Proc. IEEE, 2011, 99, (7), pp. 11621182.
    23. 23)
      • 6. Weeratunga, K., Somers, A.: ‘Connected vehicles: are we ready?’ (Main Roads Western Australia, East Perth, Australia, 2015), pp. 17.
    24. 24)
      • 8. ETSI EN Standard 302 665V1.1.1: ‘Intelligent transport systems (ITS); communications architecture’, 2010.
    25. 25)
      • 1. ITF: ‘Zero road deaths and serious injuries: leading a paradigm shift to a safe system’ (OECD Publishing Paris, Paris, France, 2016), pp. 811.
    26. 26)
      • 17. Wu, J., Fang, M., Li, X.: ‘Reinforcement learning based mobility adaptive routing for vehicular Ad-hoc networks’, Wirel. Pers. Commun., 2018, 101, (4), pp. 21432171.
    27. 27)
      • 27. Förster, A.: ‘Machine learning techniques applied to wireless Ad-hoc networks: guide and survey’. 3rd Int. Conf. Intelligence Sensors, Sensor Network and Information, Melbourne, Australia, December 2007, pp. 365370.
    28. 28)
      • 23. Fakir, M., Steenhaut, K., Nowé, A.: ‘QoS based routing in ATM networks using a variant Q-routing with load balancing’. Proc. 5th Multi-Conf. Systems, Cyber. and Info., Orlando, USA, July 2001.
    29. 29)
      • 12. Zhao, J., Cao, G.: ‘VADD: vehicle-assisted data delivery in vehicular Ad hoc networks’, IEEE Trans. Veh. Technol., 2008, 57, (3), pp. 19101922.
    30. 30)
      • 11. Eze, E. C., Zhang, S., Liu, E.: ‘Vehicular ad hoc networks (VANETs): current state, challenges, potentials and way forward’. Proc. 20th Int. Conf. Automation and Computing, Cranfield, UK, September 2014, pp. 176181.
    31. 31)
      • 18. Li, F., Song, X., Chen, H., et al: ‘Hierarchical routing for vehicular Ad hoc networks via reinforcement learning’, IEEE Trans. Veh. Technol., 2019, 68, (2), pp. 18521865.
    32. 32)
      • 15. Jeong, J., Guo, S., Gu, Y., et al: ‘TBD: trajectory based data forwarding for light-traffic vehicular networks’. Proc. IEEE 29th Int. Conf. on Distributed Computing Systems, Montreal, Canada, June 2009, pp. 231238.
    33. 33)
      • 13. Skordylis, A., Trigoni, N.: ‘Delay-bounded routing in vehicular ad-hoc networks’. Proc. 9th ACM Int. Symp. Mobile Ad Hoc Network and Comp., Hong Kong SAR, China, May 2008, pp. 341350.
    34. 34)
      • 22. Pal, S. K., Misra, S.: ‘Soft computing applications in sensor networks’ (Chapman and Hall/CRC Press, London, UK, 2016, 1st edn.).
    35. 35)
      • 10. Nellore, K., Hancke, G. P.: ‘A survey on urban traffic management system using wireless sensor networks’, Sensors, 2016, 16, (2), pp. 125.
    36. 36)
      • 38. Nelson, M., Gailly, J.: ‘The data compression book’ (MIS Press, New York, NY, USA, 1996, 2nd edn.).
    37. 37)
      • 21. Cho, E., Wong, K.: ‘CS 229 final report: location based adaptive routing protocol (LBAR) using reinforcement learning’. Stanford University, 2008.
    38. 38)
      • 30. Sutton, R.S., Barto, A.G.: ‘Reinforcement learning: an Introduction’ (MIT Press, Cambridge, MA, USA, 1998, 2nd edn.).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2019.0375
Loading

Related content

content/journals/10.1049/iet-its.2019.0375
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address