access icon free Three-dimensional trajectory tracking of an underactuated AUV based on fuzzy dynamic surface control

The three-dimensional trajectory tracking of an underactuated autonomous underwater vehicle (AUV) under the complex unknowns including model uncertainties and time-varying disturbances is studied. The reference pitch angle and yaw angle are designed in kinematics, based on the time-varying reference trajectory. Dynamics controllers are developed by incorporating the first-order filter into the dynamic surface control (DSC), which simplifies the design process and overcome differential explosion in the traditional backstepping. To reduce the influence of the complex unknowns, an adaptive fuzzy-based DSC scheme is employed to identify the lumped disturbances with arbitrary accuracy and further enhance system robustness. Lyapunov stability analysis demonstrates that tracking errors are bounded and converge to an arbitrarily small neighbourhood of zero. Finally, simulation studies and comparisons with DSC scheme are carried out to illustrate the effectiveness and superiority of the proposed scheme.

Inspec keywords: control nonlinearities; robust control; uncertain systems; Lyapunov methods; fuzzy control; adaptive control; trajectory control; autonomous underwater vehicles; time-varying systems

Other keywords: three-dimensional trajectory tracking; first-order filter; fuzzy-based DSC scheme; tracking errors; lumped disturbances; pitch angle; dynamics controllers; time-varying reference trajectory; design process; backstepping; underactuated AUV; underactuated autonomous underwater vehicle; fuzzy dynamic surface control; system robustness; Lyapunov stability analysis; time-varying disturbances; model uncertainties; yaw angle; differential explosion

Subjects: Marine system control; Nonlinear control systems; Self-adjusting control systems; Spatial variables control; Fuzzy control; Stability in control theory; Mobile robots; Time-varying control systems

References

    1. 1)
      • 37. Ho, H.F., Wong, Y.K., Rad, A.B.: ‘Adaptive fuzzy sliding mode control with chattering elimination for nonlinear SISO systems’, Simul. Modelling Pract. Theory, 2009, 17, (7), pp. 11991210.
    2. 2)
      • 39. Liang, X., Qu, X., Hou, Y., et al: ‘Three-dimensional path following control of underactuated autonomous underwater vehicle based on damping backstepping’, Int. J. Adv. Robot. Syst., 2017, 14, (4), pp. 19.
    3. 3)
      • 13. Xu, J., Wang, M., Qiao, L.: ‘Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles’, Ocean Eng., 2015, 105, pp. 5463.
    4. 4)
      • 2. Karimi, H.R., Zapateiro, M., Luo, N.: ‘Adaptive synchronization of master–slave systems with mixed neutral and discrete time-delays and nonlinear perturbations’, Asian J. Control, 2012, 14, (1), pp. 251257.
    5. 5)
      • 33. Jiang, B., Karimi, H.R., Kao, Y., et al: ‘A novel robust fuzzy integral sliding mode control for nonlinear semi-Markovian jump T–S fuzzy systems’, IEEE Trans. Fuzzy Syst., 2018, 26, (6), pp. 35943604.
    6. 6)
      • 15. Yildirim, S.: ‘Design of neural network control system for controlling trajectory of autonomous underwater vehicles’, Int. J. Adv. Robot. Syst., 2014, 11, (7), pp. 117.
    7. 7)
      • 14. Yan, Y., Yu, S.: ‘Sliding mode tracking control of autonomous underwater vehicles with the effect of quantization’, Ocean Eng., 2018, 151, pp. 322328.
    8. 8)
      • 26. Mu, D., Wang, G., Fan, Y., et al: ‘Fuzzy-based optimal adaptive line-of-sight path following for underactuated unmanned surface vehicle with uncertainties and time-varying disturbances’, Math. Probl. Eng., 2018, 2018, pp. 112.
    9. 9)
      • 12. Wang, N., Pan, X.: ‘Path-following of autonomous underactuated ships: a translation-rotation cascade control approach’, IEEE/ASME Trans. Mechatronics, 2019, pp. 110, doi: 10.1109/TMECH.2019.2932205.
    10. 10)
      • 22. Bi, F.Y., Wei, Y.J., Zhang, J.: ‘Position-tracking control of underactuated autonomous underwater vehicles in the presence of unknown ocean currents’, IET Control Theory Applic., 2010, 4, (11), pp. 23692380.
    11. 11)
      • 34. Karimi, H.R.: ‘A sliding mode approach to H synchronization of master-slave time-delay systems with Markovian jumping parameters and nonlinear uncertainties’, J. Franklin Inst., 2012, 349, (4), pp. 14801496.
    12. 12)
      • 27. Wang, N., Su, S., Pan, X.: ‘Yaw-guided trajectory tracking control of an asymmetric underactuated surface vehicle’, IEEE Trans. Ind. Inf., 2019, 15, pp. 35023513.
    13. 13)
      • 29. Wang, N., Sun, Z., Yin, J., et al: ‘Fuzzy unknown observer-based robust adaptive path following control of underactuated surface vehicles subject to multiple unknowns’, Ocean Eng., 2019, 176, pp. 5764.
    14. 14)
      • 19. Elmokadem, T., Zribi, M., Youcef-Toumi, K.: ‘Trajectory tracking sliding mode control of underactuated AUVs’, Nonlinear Dyn., 2016, 84, (2), pp. 10791091.
    15. 15)
      • 20. Elmokadem, T., Zribi, M., Youcef-Toumi, K.: ‘Terminal sliding mode control for the trajectory tracking of underactuated autonomous underwater vehicles’, Ocean Eng., 2017, 129, pp. 613625.
    16. 16)
      • 17. Wang, N., Sun, J.C., Er, M.J.: ‘Tracking-error-based universal adaptive fuzzy control for output tracking of nonlinear systems with completely unknown dynamics’, IEEE Trans. Fuzzy Syst., 2018, 26, (2), pp. 869883.
    17. 17)
      • 3. Karimi, H.R.: ‘Robust synchronization and fault detection of uncertain master-slave systems with mixed time-varying delays and nonlinear perturbations’, Int. J. Control Autom. Syst., 2011, 9, (4), pp. 671680.
    18. 18)
      • 21. Valenciaga, F.: ‘A second order sliding mode path following control for autonomous surface vessels’, Asian J. Control, 2014, 16, (5), pp. 15151521.
    19. 19)
      • 23. Liang, X., Qu, X., Hou, Y., et al: ‘Three-dimensional trajectory tracking control of an underactuated autonomous underwater vehicle based on ocean current observer’, Int. J. Adv. Robot. Syst., 2018, 15, (5), pp. 19.
    20. 20)
      • 18. Londhe, P.S., Patre, B.M.: ‘Adaptive fuzzy sliding mode control for robust trajectory tracking control of an autonomous underwater vehicle’, Intell. Serv. Robot., 2019, 12, pp. 87102.
    21. 21)
      • 31. Yu, J., Ma, Y., Yu, H.: ‘Adaptive fuzzy dynamic surface control for induction motors with iron losses in electric vehicle drive systems via backstepping’, Inf. Sci., 2017, 376, pp. 172189.
    22. 22)
      • 11. Do, K.D., Pan, J.: ‘Practical control of underactuated ships’, Ocean Eng., 2010, 37, (13), pp. 11111119.
    23. 23)
      • 10. Do, K.D., Pan, J., Jiang, Z.P.: ‘Robust and adaptive path following for underactuated autonomous underwater vehicles’, Ocean Eng., 2004, 31, (16), pp. 19671997.
    24. 24)
      • 35. Jiang, B., Karimi, H.R., Kao, Y., et al: ‘Adaptive control of nonlinear semi-Markovian jump T–S fuzzy systems with immeasurable premise variables via sliding mode observer’, IEEE Trans. Cybern., 2018, 12, pp. 111.
    25. 25)
      • 16. Lakhekar, G.V., Waghmare, L.M.: ‘Adaptive fuzzy exponential terminal sliding mode controller design for nonlinear trajectory tracking control of autonomous underwater vehicle’, Int. J. Dyn. Control, 2018, 6, (6), pp. 16901705.
    26. 26)
      • 5. Wang, N., Karimi, H.R.: ‘Successive waypoints tracking of an underactuated surface vehicle’, IEEE Trans. Ind. Inf., 2019, p. 110, doi: 10.1109/TII.2019.2922823.
    27. 27)
      • 7. Liang, X., Qu, X., Wan, L., et al: ‘Three-dimensional path following of an underactuated AUV based on fuzzy backstepping sliding mode control’, Int. J. Fuzzy Syst., 2017, 20, (2), pp. 640649.
    28. 28)
      • 32. Wang, N., Er, M.J., Sun, J.: ‘Adaptive robust online constructive fuzzy control of a complex surface vehicle system’, IEEE Trans. Cybern., 2016, 46, (7), pp. 15111523.
    29. 29)
      • 1. Wynn, R.B., Huvenne, V.A.I., Le Bas, T.P., et al: ‘Autonomous underwater vehicles: their past, present and future contributions to the advancement of marine geoscience’, Mar. Geol., 2014, 352, pp. 451468.
    30. 30)
      • 9. Wang, F., Wan, L., Li, Y.: ‘A survey on development of motion control for underactuated AUV’, Shipbuild. China, 2010, 51, (2), pp. 227241.
    31. 31)
      • 24. Wang, N., Sun, Z., Jiao, Y., et al: ‘Surge-heading guidance based finite-time path-following of underactuated marine vehicles’, IEEE Trans. Veh. Technol., 2019, 68, pp. 85238532.
    32. 32)
      • 28. Wang, N., Deng, Z.: ‘Finite-time fault estimator based fault-tolerance control for a surface vehicle with input saturations’, IEEE Trans. Ind. Inf., 2019, pp. 19, doi: 10.1109/TII.2019.2930471.
    33. 33)
      • 25. Xu, J., Wang, M., Qiao, L.: ‘Backstepping-based controller for three-dimensional trajectory tracking of underactuated unmanned underwater vehicles’, Control Theory Appl., 2014, 31, (11), pp. 15891596.
    34. 34)
      • 36. Patre, B.M., Londhe, P.S., Nagarale, R.M.: ‘Fuzzy sliding mode control for spatial control of large nuclear reactor’, IEEE Trans. Nucl. Sci., 2015, 62, (5), pp. 111.
    35. 35)
      • 4. Na, J., Huang, Y., Wu, X., et al: ‘Adaptive finite-time fuzzy control of nonlinear active suspension systems with input delay’, IEEE Trans. Cybern., 2019, pp. 112, doi: 10.1109/TCYB.2019.2894724.
    36. 36)
      • 30. Wang, N., Karimi, H.R., Li, H., et al: ‘Accurate trajectory tracking of disturbed surface vehicles: a finite-time control approach’, IEEE/ASME Trans. Mechatronics, 2019, 24, (3), pp. 10641074.
    37. 37)
      • 38. Li, Y., Tong, S., Liu, Y.: ‘Robust adaptive fuzzy dynamic surface control of uncertain nonlinear for systems’, 2008 Chinese Control and Decision Conf., Yantai, China, July 2008, pp. 50195024.
    38. 38)
      • 6. Kim, J., Joe, H., Yu, S.: ‘Time-delay controller design for position control of autonomous underwater vehicle under disturbances’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 10521061.
    39. 39)
      • 8. Myint, M., Yonemori, K., Lwin, K.N.: ‘Dual-eyes vision-based docking system for autonomous underwater vehicle: an approach and experiments’, J. Intell. Robot. Syst., 2018, 92, pp. 159186.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2019.0347
Loading

Related content

content/journals/10.1049/iet-its.2019.0347
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading