Your browser does not support JavaScript!

Urban road traffic condition forecasting based on sparse ride-hailing service data

Urban road traffic condition forecasting based on sparse ride-hailing service data

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Traffic flows of the urban transport system are randomly influenced by many internal/external factors, which bring in a huge challenge to accurately forecasting road conditions. This study combines the CANDECOMP/PARAFAC weighted optimisation and diffusion convolution gated recurrent unit (DCGRU) models to conduct the traffic condition forecasting based on the sparse ride-hailing service data. A data completion method based on the tensor decomposition is modified by adding factor tensor in the regular terms, which contains the characteristics of weekday, time period, road segment. Subsequently, the DCGRU model of multiclass predicting is adopted in the data set to predict the traffic conditions. A numerical experiment is conducted based on the one-month ride-hailing service data, collected around the Nanjing South railway station. The predicting results indicate that the method in this study outperforms other traditional models in different tested traffic conditions.


    1. 1)
      • 17. Guo, J., Huang, W., Williams, B.M.: ‘Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification’, Transp. Res. C, Emerg. Technol., 2014, 43, pp. 5064.
    2. 2)
      • 18. Liu, X., Fang, X., Qin, Z., et al: ‘A short-term forecasting algorithm for network traffic based on chaos theory and SVM’, J. Netw. Syst. Manage., 2011, 19, (4), pp. 427447.
    3. 3)
      • 4. Gu, Z., Saberi, M., Sarvi, Z., et al: ‘A big data approach for clustering and calibration of link fundamental diagrams for large-scale network simulation applications’, Transp. Res. Procedia, 2017, 23, pp. 901921.
    4. 4)
      • 21. Li, Y., Yu, R., Shahabi, C., et al: ‘Diffusion convolutional recurrent neural network: data-driven traffic forecasting’. arXiv preprint arXiv:1707.019262017.
    5. 5)
      • 23. Teng, S.-H.: ‘Scalable algorithms for data and network analysis’, Found. Trends® Theor. Comput. Sci., 2016, 12, (1–2), pp. 1274.
    6. 6)
      • 13. Zhao, Q., Zhang, L., Cichocki, A.: ‘Bayesian CP factorization of incomplete tensors with automatic rank determination’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 37, (9), pp. 17511763.
    7. 7)
      • 10. Ran, B., Tan, H., Feng, J., et al: ‘Traffic speed data imputation method based on tensor completion’, Comput. Intell. Neurosci., 2015, 2015, (2), p. 22.
    8. 8)
      • 6. Acar, E., Dunlavy, D.M., Kolda, T.G., et al: ‘Scalable tensor factorizations for incomplete data’, Chemometr. Intell. Lab. Syst., 2010, 106, (1), pp. 4156.
    9. 9)
      • 1. Cheng, X., Zhang, R., Zhou, J., et al: ‘Deeptransport: learning spatial-temporal dependency for traffic condition forecasting’. Int. Joint Conf. on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 2018, pp. 18.
    10. 10)
      • 9. Liu, J., Musialski, P., Wonka, P., et al: ‘Tensor completion for estimating missing values in visual data’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (1), pp. 208220.
    11. 11)
      • 22. Liu, Z., Liu, Y., Meng, Q., et al: ‘A tailored machine learning approach for urban transport network flow estimation’, Transp. Res. C, 2019, 108, pp. 130150.
    12. 12)
      • 19. Wang, X., Chen, C., Min, Y., et al: ‘Efficient metropolitan traffic prediction based on graph recurrent neural network’. arXiv preprint arXiv:1811.007402018.
    13. 13)
      • 20. Liu, Y., Liu, Z., Jia, R.: ‘DeepPF: a deep learning based architecture for metro passenger flow prediction’, Transp. Res. C, 2019, 101, pp. 1834.
    14. 14)
      • 5. Tang, K., Chen, S., Liu, Z.: ‘Citywide spatial-temporal travel time estimation using big and sparse trajectories’, IEEE Trans. Intell. Transp. Syst., 2018, PP, (99), pp. 112.
    15. 15)
      • 7. Tucker, L.R.: ‘Some mathematical notes on three-mode factor analysis’, Psychometrika, 1966, 31, (3), pp. 279311.
    16. 16)
      • 14. Chi, Z., Shi, L.: ‘Short-term traffic flow forecasting using ARIMA-SVM algorithm and R’. Fifth Int. Conf. on Information Science and Control Engineering (ICISCE), Henan, People's Republic of China, 2018, pp. 517522.
    17. 17)
      • 16. Okutani, I., Stephanedes, Y.J.: ‘Dynamic prediction of traffic volume through Kalman filtering theory’, Transp. Res. B, Methodol., 1984, 18, (1), pp. 111.
    18. 18)
      • 8. Bro, R. P.A.R.A.F.A.C.: ‘Tutorial and applications’, Chemometr. Intell. Lab. Syst., 1997, 38, (2), pp. 149171.
    19. 19)
      • 15. Lin, S.-L., Huang, H.-Q., Zhu, D.-Q., et al: ‘The application of space-time ARIMA model on traffic flow forecasting’. Int. Conf. on Machine Learning and Cybernetics, Henan, People's Republic of China, 2009, pp. 34083412.
    20. 20)
      • 2. Yue, Y., Yeh, A.G.-O.: ‘Spatiotemporal traffic-flow dependency and short-term traffic forecasting’, Environ. Plann. B: Plann. Des., 2008, 35, (5), pp. 762771.
    21. 21)
      • 12. Tang, K., Chen, S., Liu, Z., et alA tensor-based Bayesian probabilistic model for citywide personalized travel time estimation’, Transp. Res. Part C Emerg. Technol., 2018, 90, pp. 260280.
    22. 22)
      • 11. Wang, Y., Zheng, Y., Xue, Y.: ‘Travel time estimation of a path using sparse trajectories’. Proc. 20th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, New York, NY, USA, 2014, pp. 2534.
    23. 23)
      • 3. Kolda, T.G., Bader, B.W.: ‘Tensor decompositions and applications’, SIAM Rev., 2009, 51, (3), pp. 455500.

Related content

This is a required field
Please enter a valid email address