access icon free Finite-time spatial path following control for a robotic underactuated airship

This study presents a finite-time spatial path following control method for a robotic underactuated airship subject to model uncertainties and external disturbances. A finite-time path following approach is proposed by combining the backstepping approach with the terminal sliding mode control technique, and the upper bounds of model uncertainties and external disturbances are estimated by the designed adaptive laws. Compared with existing works on the path following control of airships, the algorithm presented in this study can guarantee the airship track a spatial predefined path in finite time in the presence of model uncertainties and external disturbances. Simulations are given to illustrate the effectiveness of the proposed path following control method.

Inspec keywords: control nonlinearities; nonlinear control systems; aircraft control; airships; adaptive control; variable structure systems; control system synthesis

Other keywords: mode control technique; airship track; robotic underactuated airship subject; spatial predefined path; finite-time path following approach; external disturbances; model uncertainties; designed adaptive laws; finite-time spatial path; control method; time spatial path following control; backstepping approach

Subjects: Stability in control theory; Nonlinear control systems; Multivariable control systems; Control system analysis and synthesis methods; Self-adjusting control systems; Aerospace control

References

    1. 1)
      • 21. Lu, K.F., Xia, Y.Q.: ‘Adaptive attitude tracking control for rigid spacecraft with finite-time convergence’, Automatica, 2013, 49, (12), pp. 35913599.
    2. 2)
      • 17. Yang, Y.N., Yan, Y.: ‘Neural network gain-scheduling sliding mode control for three-dimensional trajectory tracking of robotic airships’, Proc. Inst. Mech. Eng. I, J. Syst. Control Eng., 2015, 229, (6), pp. 529540.
    3. 3)
      • 24. Jia, H.M.: ‘Study of spatial target tracking nonlinear control of underactuated UUV based on backstepping’. PhD thesis, Harbin Engineering University, 2012.
    4. 4)
      • 20. Jin, X.: ‘Fault tolerant finite-time leader–follower formation control for autonomous surface vessels with LOS range and angle constraints’, Automatica, 2016, 68, pp. 228236.
    5. 5)
      • 6. Moutinho, A., Azinheira, J., Paiva, E., et al: ‘Airship robust path-tracking: a tutorial on airship modelling and gain-scheduling control design’, Control Eng. Pract., 2016, 50, pp. 2236.
    6. 6)
      • 18. He, S.P., Fang, H.Y., Zhang, M.G., et al: ‘Online policy iterative-based H optimization algorithm for a class of nonlinear systems’, Inf. Sci., 2019, 495, pp. 113.
    7. 7)
      • 14. Wang, Y.Y., Karimi, H.R., Lam, H.K., et al: ‘An improved result on exponential stabilization of sampled-data fuzzy systems’, IEEE Trans. Fuzzy Syst., 2018, 26, (6), pp. 38753883.
    8. 8)
      • 23. Zhai, J.Y., Song, Z.B., Karimi, H.R., et al: ‘Global finite-time control for a class of switched nonlinear systems with different powers via output feedback’, Int. J. Syst. Sci., 2018, 49, (13), pp. 27762783.
    9. 9)
      • 2. Huo, W., Zheng, Z.W.: ‘Planar path following control for stratospheric airship’, IET Control Theory Appl., 2013, 7, (2), pp. 185201.
    10. 10)
      • 12. Zhu, E.L., Pang, J.F., Sun, N., et al: ‘Airship horizontal trajectory tracking control based on active disturbance rejection control (ADRC)’, Nonlinear Dyn., 2014, 75, (4), pp. 725734.
    11. 11)
      • 4. Wimmer, D.A., Bildstein, M., Well, K.H., et al: ‘Research airship ‘Lotte’ development and operation of controllers for autonomous flight phases’. IEEE Int. Conf. Intelligent Robots & Systems, Lausanne, Switzerland, October 2002, pp. 5568.
    12. 12)
      • 9. Zhou, W.X., Zhou, P.F., Wang, Y.Y., et al: ‘Planar path following nonlinear controller design for an autonomous airship’, Proc. Inst. Mech. Eng. G, J. Aerosp. Eng., 2019, 233, (5), pp. 18791899.
    13. 13)
      • 19. He, S.P., Fang, H.Y., Zhang, M.G., et al: ‘Adaptive optimal control for a class of nonlinear systems: the online policy iteration approach’, IEEE Trans. Neural Netw. Learn. Syst., 2019, to be published, doi: 10.1109/TNNLS.2019.2905715.
    14. 14)
      • 11. Zheng, Z.W., Huo, W., Wu, Z.: ‘Autonomous airship path following control: theory and experiments’, Control Eng. Pract., 2013, 21, (6), pp. 769788.
    15. 15)
      • 3. Ramos, J., Paiva, E., Azinheira, J., et al: ‘Autonomous flight experiment with a robotic unmanned airship’. IEEE Int. Conf. Robotics & Automation, Seoul, Korea, February 2001, pp. 41524157.
    16. 16)
      • 16. Wang, Y.Y., Yang, X.X., Yan, H.C.: ‘Reliable fuzzy tracking control of near-space hypersonic vehicle using aperiodic measurement information’, IEEE Trans. Ind. Electron., 2019, 66, (12), pp. 94399447, to be published, doi: 10.1109/TIE.2019.2892696.
    17. 17)
      • 7. Zhou, W.X., Xiao, C., Zhou, P.F., et al: ‘Spatial path following control of an autonomous underactuated airship’, Int. J. Control Autom. Syst., 2019, 17, (7), pp. 17261737.
    18. 18)
      • 5. Hygounenc, E., Soueres, P.: ‘Lateral path following GPS-based control of a small-size unmanned blimp’. IEEE Int. Conf. Robotics & Automation, Taipei, Taiwan, September 2003, vol. 1, pp. 540545.
    19. 19)
      • 22. Wang, N., Karimi, H.R., Li, H.Y., et al: ‘Accurate trajectory tracking of disturbed surface vehicles: a finite-time control approach’, IEEE/ASME Trans. Mechatronics, 2019, 24, (3), pp. 10641074.
    20. 20)
      • 27. Wang, X.L., Fu, G.Y., Duan, D.P., et al: ‘Experimental investigations on aerodynamic characteristics of the ZHIYUAN-1 airship’, J. Aircr., 2010, 47, (4), pp. 14631468.
    21. 21)
      • 8. Azinheira, J.R., Moutinho, A., Paiva, E.C.: ‘A backstepping controller for path-tracking of an underactuated autonomous airship’, Int. J. Robust Nonlinear Control, 2009, 19, (4), pp. 418441.
    22. 22)
      • 1. Zheng, Z.W., Xie, L.H.: ‘Finite-time path following control for a stratospheric airship with input saturation and error constraint’, Int. J. Control, 2019, 92, (2), pp. 368393.
    23. 23)
      • 26. He, S.P., Lyu, W.Z., Liu, F.: ‘Robust H sliding mode controller design of a class of time-delayed discrete conic-type nonlinear dystems’, IEEE Trans. Syst. Man Cybern., Syst., 2018, pp. 18, to be published, doi: 10.1109/TSMC.2018.2884491.
    24. 24)
      • 25. Nie, R., He, S.P., Liu, F., et al: ‘Sliding mode controller design for conic-type nonlinear semi-Markovian jumping systems of time-delayed Chua's circuit’, IEEE Trans. Syst. Man Cybern. Syst., 2019, pp. 19, to be published, doi: 10.1109/TSMC.2019.2914491.
    25. 25)
      • 13. Wang, Y.Y., Karimi, H.R., Shen, H., et al: ‘Fuzzy-model-based sliding mode control of nonlinear descriptor systems’, IEEE Trans. Cybern., 2018, 49, (9), pp. 34093419.
    26. 26)
      • 10. Yang, Y.N., Wu, J., Zheng, W.: ‘Positioning control for an autonomous airship’, J. Aircr., 2016, 53, (6), pp. 16381646.
    27. 27)
      • 15. Zhou, W.X., Zhou, P.F., Wang, Y.Y., et al: ‘Station-keeping control of an underactuated stratospheric airship’, Int. J. Fuzzy Syst., 2019, 21, (3), pp. 715732.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2019.0284
Loading

Related content

content/journals/10.1049/iet-its.2019.0284
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading