Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Sensor fault estimation of networked vehicle suspension system with deny-of-service attack

This study is concerned with the sensor fault estimation problem for network-based vehicle suspension system with deny-of-service attack, where a linear robust observer is designed. First of all, the attack behaviour switching is modelled as a Markovian jumping process, and then a sufficient condition based on the Markovian jumping system approach is proposed such that the sensor fault estimation error system is asymptotically stable in the mean-square sense with a prescribed performance level. In this work, the occurring and transition probabilities of the attack are allowed to be partially unknown and uncertain. Finally, a simulation example is presented that validates the effectiveness of design method.

References

    1. 1)
      • 17. Wu, Z.T., Karimi, H.R., Dang, C.Y.: ‘An approximation algorithm for graph partitioning via deterministic annealing neural network’, Neural Netw., 2019, 117, pp. 191200.
    2. 2)
      • 21. Zhang, H., Hong, Q., Yan, H., et al: ‘Event-based distributed H filtering networks of 2 DOF quarter-car suspension systems’, IEEE Trans. Ind. Inf., 2017, 13, (1), pp. 312321.
    3. 3)
      • 15. Wu, Z.T., Jiang, B.P., Kao, Y.G.: ‘Finite-time H filtering for ito stochastic markovian jump systems with distributed time-varying delays based on optimisation algorithm’, IET Control Theory Appl., 2019, 13, (5), pp. 702710.
    4. 4)
      • 6. Du, H., Zhang, N.: ‘Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint’, IEEE Trans. Fuzzy Syst., 2009, 17, (2), pp. 343356.
    5. 5)
      • 11. Li, Y., Deng, H.F., Xu, X., et al: ‘Modelling and testing of in-wheel motor drive intelligent electric vehicles based on cosimulation with Carsim/Simulink’, IET Intell. Transp. Syst., 2019, 13, (1), pp. 115123.
    6. 6)
      • 19. Zhu, X.D., Xia, Y.Q., Chai, S.C., et al: ‘Fault detection for vehicle active suspension systems in finite-frequency domain’, IET Control Theory Appl., 2019, 13, (3), pp. 387394.
    7. 7)
      • 3. Li, H.Y., Yu, J.Y., Hilton, C., et al: ‘Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach’, IEEE Trans. Ind. Electron., 2013, 60, (8), pp. 33283338.
    8. 8)
      • 32. Guo, F.H., Wang, L., Wen, C.Y., et al: ‘Distributed voltage restoration and current sharing control in islanded DC microgrid systems without continuous communication’, IEEE Trans. Ind. Electron., 2019, doi: 10.1109/TIE.2019.2907507.
    9. 9)
      • 18. Mao, Z., Wang, Y., Jiang, B., et al: ‘Fault diagnosis for a class of active suspension systems with dynamic actuators faults’, Int. J. Control Autom. Syst., 2016, 14, (5), pp. 11601172.
    10. 10)
      • 31. Zhang, D., Xu, Z.H., Srinivasan, D., et al: ‘Leader–follower consensus of multiagent systems with energy constraints: a markovian system approach’, IEEE Trans. Syst., Man, Cybern.: Syst., 2017, 47, (7), pp. 17271736.
    11. 11)
      • 25. Paradis, L., Han, Q.: ‘A survey of fault management in wireless sensor networks’, J. Netw. Syst. Manage., 2007, 15, (2), pp. 171190.
    12. 12)
      • 26. Zhao, Y., Zhang, L., Shen, S., et al: ‘Robust stability criterion for discrete-time uncertain Markovian jumping neural networks with defective statistics of modes transitions’, IEEE Trans. Neural Netw., 2011, 22, (1), pp. 164170.
    13. 13)
      • 14. Cheng, J., Park, J.H., Cao, J.D., et al: ‘Hidden Markov model-based nonfragile state estimation of switched neural network with probabilistic quantized outputs’, IEEE Trans. Cybern., 2019, doi: 10.1109/TCYB.2019.2909748.
    14. 14)
      • 10. Pan, H.H., Jing, X.J., Sun, W.C., et al: ‘A bioinspired dynamics-based adaptive tracking control for nonlinear suspension systems’, IEEE Trans. Control Syst. Technol., 2018, 26, (3), pp. 903914.
    15. 15)
      • 12. Ren, Y., Zheng, L., Khajepour, A.: ‘Integrated model predictive and torque vectoring control for path tracking of 4-wheeldriven autonomous vehicles’, IET Intell. Transp. Syst., 2019, 13, (1), pp. 98107.
    16. 16)
      • 4. Rath, J.J., Defoort, M., Karimi, H.R., et al: ‘Output feedback active suspension control with higher order terminal sliding mode’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 13921403.
    17. 17)
      • 30. Zhang, D., Shi, P., Yu, L.: ‘Containment control of linear multiagent systems with aperiodic sampling and measurement size reduction’, IEEE Trans. Neural Netw. Learn. Syst., 2018, 29, (10), pp. 50205029.
    18. 18)
      • 24. Zhang, D., Feng, G.: ‘A new switched system approach to leader–follower consensus of heterogeneous linear multiagent systems with Dos attack’, IEEE Trans. Syst., Man, Cybern.: Syst., 2019, doi:10.1109/TSMC.2019.2895097.
    19. 19)
      • 23. Zhang, D., Liu, L., Feng, G.: ‘Consensus of heterogeneous linear multiagent systems subject to aperiodic sampled-data and Dos attack’, IEEE Trans. Cybern., 2019, 49, (4), pp. 15011511.
    20. 20)
      • 20. Yan, S., Sun, W.C., He, F.H., et al: ‘Adaptive fault detection and isolation for active suspension systems with model uncertainties’, IEEE Trans. Reliab., 2019, 68, pp. 927937, doi: 10.1109/TR.2018.2868949.
    21. 21)
      • 16. Zhang, D., Shi, P., Wang, Q.G., et al: ‘Analysis and synthesis of networked control systems: a survey of recent advances and challenges’, ISA Trans., 2017, 66, pp. 376392.
    22. 22)
      • 5. Karimi, H.R., Zapateiro, M., Luo, N.: ‘An LMI approach to H controlof vehicle engine-body vibration systems with time-varying actuator delay’, Proc. Inst. Mech. Eng., I: J. Syst. Control Eng., 2008, 222, (8), pp. 883899.
    23. 23)
      • 7. Sun, W., Zhao, Y., Li, J., et al: ‘Active suspension control with frequency band constraints and actuator input delay’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 530537.
    24. 24)
      • 1. Sun, W., Gao, H., Kaynak, O.: ‘Vibration isolation for active suspensionwith performance constraints and actuator saturation’, IEEE/ASME Trans. Mechatronics, 2015, 20, (2), pp. 67683.
    25. 25)
      • 9. Na, J., Huang, Y.B., Wu, X., et al: ‘Active adaptive estimation and control for vehicle suspensions with prescribed performance’, IEEE Trans. Control System Technol., 2018, 26, (6), pp. 20632077.
    26. 26)
      • 29. Biron, Z.A., Dey, S., Pisu, P.: ‘Real-time detection and estimation of denial of service attack in connected vehicle systems’, IEEE Trans. Intell. Transp. Syst., 2018, 19, (12), pp. 38933902.
    27. 27)
      • 22. Zhang, D., Shi, P., Zhang, W.A., et al: ‘Energy-efficient distributed filtering in sensor networks: a unified switched system approach’, IEEE Trans. Cybern., 2017, 47, (7), pp. 16181629.
    28. 28)
      • 28. Boyd, S., Ghaoui, L.E., Feron, E., et al: ‘Linear matrix inequalities in systems and control theory’ (SIAM Press, Philadelphia, Pennsylvania, USA, 1994, 1st Edn.).
    29. 29)
      • 2. Du, H.P., Lam, J., Sze, K.Y.: ‘Design of non-fragile H controller for active vehicle suspensions’, J. Vib. Control, 2005, 11, (2), pp. 225243.
    30. 30)
      • 8. Li, H.Y., Jing, X.J., Karimi, H.R.: ‘Output-feedback-based H control for vehicle suspension systems with control delay’, IEEE Trans. Ind. Electron., 2014, 61, (1), pp. 436446.
    31. 31)
      • 27. Jia, Q.X., Li, H.Y., Zhang, Y.C., et al: ‘Robust observer-based sensor fault reconstruction for discrete-time systems via a descriptor system approach’, Int. J. Control Autom. Syst., 2015, 13, (2), pp. 274283.
    32. 32)
      • 13. Li, B.Y., Du, H.P., Li, W.H.: ‘Trajectory control for autonomous electric vehicles with in-wheel motors based on a dynamics model approach’, IET Intell. Transp. Syst., 2016, 10, (5), pp. 318330.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2019.0258
Loading

Related content

content/journals/10.1049/iet-its.2019.0258
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address