access icon free Finite-time trajectory tracking control for autonomous airships with uncertainties and external disturbances

This study addresses the finite-time tracking control problem for autonomous airships with uncertainties and external disturbances. Six-degree-of-freedom kinematics and dynamics equations are established by considering the model uncertainties and external disturbances. To handle the model uncertainties and external disturbances, a finite-time sliding mode disturbance observer (DOB) is designed. To have a good tracking performance, a finite-time command-filtered backstepping-supertwisting controller is proposed with DOB. By using Lyapunov theory, the finite-time convergence of tracking errors and the stability of the control method is proved. Finally, the simulation results show that the controller can track the desired trajectory well in spite of model uncertainties and external disturbances.

Inspec keywords: variable structure systems; uncertain systems; control nonlinearities; stability; observers; Lyapunov methods; autonomous aerial vehicles; airships; vehicle dynamics; trajectory control

Other keywords: Lyapunov theory; finite-time sliding mode disturbance observer; DOB; external disturbances; stability; dynamics equations; finite-time command-filtered backstepping-supertwisting controller; finite-time convergence; model uncertainties; autonomous airships; six-degree-of-freedom kinematics; tracking errors; finite-time trajectory tracking control

Subjects: Simulation, modelling and identification; Multivariable control systems; Telerobotics; Nonlinear control systems; Aerospace control; Spatial variables control; Vehicle mechanics; Stability in control theory; Mobile robots; Control technology and theory (production)

References

    1. 1)
      • 10. Yang, J., Chen, W.H., Li, S.: ‘Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties’, IET Control Theory Applic., 2011, 5, p. 2053.
    2. 2)
      • 14. Liu, C., McAree, O., Chen, W.: ‘Path-following control for small fixed-wing unmanned aerial vehicles under wind disturbances’, Int. J. Robust Nonlinear Control, 2012, 23, pp. 16821698.
    3. 3)
      • 39. Li, S., Du, H., Lin, X.: ‘Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics’, Automatica, 2011, 47, pp. 17061712.
    4. 4)
      • 3. Zhang, L., Li, J., Meng, J., et al: ‘Thermal performance analysis of a high-altitude solar-powered hybrid airship’, Renew. Energy, 2018, 125, pp. 890906.
    5. 5)
      • 23. Wang, Y., Wang, Q., Zhou, P., et al: ‘Robust H directional control for a sampled-data autonomous airship’, J. Central South Univ., 2014, 21, pp. 13391346.
    6. 6)
      • 22. Zhang, D., Xu, Z., Karimi, H.R., et al: ‘Distributed H output-feedback control for consensus of heterogeneous linear multiagent systems with aperiodic sampled-data communications’, IEEE Trans. Ind. Electron., 2018, 65, pp. 41454155.
    7. 7)
      • 21. Zhang, D., Shi, P., Yu, L.: ‘Containment control of linear multiagent systems with aperiodic sampling and measurement size reduction’, IEEE Trans. Neural Netw. Learning Syst., 2018, 29, pp. 50205029.
    8. 8)
      • 35. Zhao, Z., Yang, J., Li, S., et al: ‘Finite-time super-twisting sliding mode control for Mars entry trajectory tracking’, J. Franklin Inst., 2015, 352, pp. 52265248.
    9. 9)
      • 44. Li, Y.: ‘Dynamics modeling and simulation of flexible airships’, AIAA J., 2009, 47, pp. 592605.
    10. 10)
      • 19. Yang, Y., Yan, Y.: ‘Neural network gain-scheduling sliding mode control for three-dimensional trajectory tracking of robotic airships’, Proc. Inst. Mech. Eng. I, J. Syst. Control Eng., 2015, 229, pp. 529540.
    11. 11)
      • 12. Levant, A.: ‘Higher-order sliding modes, differentiation and output-feedback control’, Int. J. Control, 2003, 76, pp. 924941.
    12. 12)
      • 24. Wu, Z., Jiang, B., Kao, Y.: ‘Finite-time H filtering for Itô stochastic Markovian jump systems with distributed time-varying delays based on optimisation algorithm’, IET Control Theory Applic., 2019, 13, pp. 702710.
    13. 13)
      • 1. Yang, Y., Yan, Y., Zhu, Z., et al: ‘Positioning control for an unmanned airship using sliding mode control based on fuzzy approximation’, Proc. Inst. Mech. Eng. G, J. Aerosp. Eng., 2014, 228, pp. 26272640.
    14. 14)
      • 57. Zheng, Z., Huo, W., Wu, Z.: ‘Trajectory tracking control for underactuated stratospheric airship’, Adv. Space Res., 2012, 50, pp. 906917.
    15. 15)
      • 34. Nagesh, I., Edwards, C.: ‘A multivariable super-twisting sliding mode approach’, Automatica, 2014, 50, pp. 984988.
    16. 16)
      • 42. Taheri, B., Case, D., Richer, E.: ‘Force and stiffness backstepping-sliding mode controller for pneumatic cylinders’, IEEE/ASME Trans. Mechatronics, 2014, 19, pp. 17991809.
    17. 17)
      • 53. Cruz-Zavala, E., Moreno, J.A., Fridman, L.M.: ‘Uniform robust exact differentiator’, IEEE Trans. Autom. Control, 2011, 56, pp. 27272733.
    18. 18)
      • 40. Bhat, S.P., Bernstein, D.S.: ‘Finite-time stability of continuous autonomous systems’, SIAM J. Control Optim., 2000, 38, pp. 751766.
    19. 19)
      • 8. Liu, S., Sang, Y., Jin, H.: ‘Robust model predictive control for stratospheric airships using LPV design’, Control Eng. Pract., 2018, 81, pp. 231243.
    20. 20)
      • 16. Zhou, W., Zhou, P., Wang, Y., et al: ‘Planar path following nonlinear controller design for an autonomous airship’, Proc. Inst. Mech. Eng. G, J. Aerosp. Eng., 2018, 233, pp. 18791899.
    21. 21)
      • 37. Tian, B., Liu, L., Lu, H., et al: ‘Multivariable finite time attitude control for quadrotor UAV: theory and experimentation’, IEEE Trans. Ind. Electron., 2018, 65, pp. 25672577.
    22. 22)
      • 46. Cai, Z., Qu, W., Xi, Y., et al: ‘Stabilization of an underactuated bottom-heavy airship via interconnection and damping assignment’, Int. J. Robust Nonlinear Control, 2007, 17, pp. 16901715.
    23. 23)
      • 45. Cai, Z.L., Qu, W.D., Xi, Y.G.: ‘Dynamic modelling for airship equipped with ballonets and ballast’, Appl. Math. Mech., 2005, 26, pp. 10721082.
    24. 24)
      • 49. Lou, W., Zhu, M., Guo, X., et al: ‘Command filtered sliding mode trajectory tracking control for unmanned airships based on RBFNN approximation’, Adv. Space Res., 2019, 63, pp. 11111121.
    25. 25)
      • 38. Xiao, C., Han, D., Wang, Y., et al: ‘Fault-tolerant tracking control for a multi-vectored thrust ellipsoidal airship using adaptive integral sliding mode approach’, Proc. Inst. Mech. Eng. G, J. Aerosp. Eng., 2017, 232, pp. 19111924.
    26. 26)
      • 31. Utkin, V., Shi, J.: ‘Integral sliding mode in systems operating under uncertainty conditions’. Proc. 35th IEEE Conf. on Decision and Control, Kobe, Japan, 1996, pp. 45914596.
    27. 27)
      • 6. Zhang, D., Liu, L., Feng, G.: ‘Consensus of heterogeneous linear multiagent systems subject to aperiodic sampled-data and Dos attack’, IEEE Trans. Cybernet., 2019, 49, pp. 15011511.
    28. 28)
      • 25. Sangjong, L., Lee, H., Daeyeon, W., et al: ‘Backstepping approach of trajectory tracking control for the mid-altitude unmanned airship’. AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, SC, USA, 20–23 August 2007, p. 6319.
    29. 29)
      • 55. Polyakov, A., Poznyak, A.: ‘Reaching time estimation for ‘super-twisting’ second order sliding mode controller via Lyapunov function designing’, IEEE Trans. Autom. Control, 2009, 54, pp. 19511955.
    30. 30)
      • 29. Han, D., Wang, X., Chen, L., et al: ‘Command-filtered backstepping control for a multi-vectored thrust stratospheric airship’, Trans. Inst. Meas. Control, 2016, 38, pp. 93104.
    31. 31)
      • 18. Moutinho, A., Azinheira, J.R.: ‘Stability and robustness analysis of the AURORA airship control system using dynamic inversion’, Proc. 2005 IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain, 2005, pp. 22652270.
    32. 32)
      • 52. Su, R., Zong, Q., Tian, B., et al: ‘Comprehensive design of disturbance observer and non-singular terminal sliding mode control for reusable launch vehicles’, IET Control Theory Applic., 2015, 9, pp. 18211830.
    33. 33)
      • 36. Lu, K., Xia, Y.: ‘Finite-time attitude control for rigid spacecraft-based on adaptive super-twisting algorithm’, IET Control Theory Applic., 2014, 8, pp. 14651477.
    34. 34)
      • 56. Nagesh, I., Edwards, C.: ‘A multivariable super-twisting sliding mode approach’, Automatica, 2014, 50, pp. 984988.
    35. 35)
      • 4. Schaefer, I., Kueke, R., Lindstrand, P.: ‘Airships as unmanned platforms: challenge and chance’. AIAA's 1st Technical Conference and Workshop on Unmanned Aerospace Vehicles, Portsmouth, VA, USA, 20–23 May 2002, p. 3423.
    36. 36)
      • 48. Zhou, W., Zhou, P., Wang, Y., et al: ‘Station-keeping control of an underactuated stratospheric airship’, Int. J. Fuzzy Syst., 2019, 21, pp. 715732.
    37. 37)
      • 9. Zhang, D., Feng, G.: ‘A new switched system approach to leader–follower consensus of heterogeneous linear multiagent systems with DoS attack’, IEEE Trans. Syst. Man Cybernet., Syst., 2019.
    38. 38)
      • 26. Wang, Y., Karimi, H.R., Shen, H., et al: ‘Fuzzy-model-based sliding mode control of nonlinear descriptor systems’, IEEE Trans. Cybernet., 2018, 49, pp. 34093419.
    39. 39)
      • 51. Levant, A.: ‘Higher-order sliding modes, differentiation and output-feedback control’, Int. J. Control, 2003, 76, pp. 924941.
    40. 40)
      • 27. Dong, W., Farrell, J.A., Polycarpou, M.M., et al: ‘Command filtered adaptive backstepping’, IEEE Trans. Control Syst. Technol., 2012, 20, pp. 566580.
    41. 41)
      • 33. Levant, A.: ‘Robust exact differentiation via sliding mode technique’, Automatica, 1998, 34, pp. 379384.
    42. 42)
      • 11. Chen, W.: ‘Nonlinear disturbance observer-enhanced dynamic inversion control of missiles’, J. Guid. Control Dyn., 2003, 26, pp. 161166.
    43. 43)
      • 20. Wang, Y., Karimi, H.R., Lam, H., et al: ‘An improved result on exponential stabilization of sampled-data fuzzy systems’, IEEE Trans. Fuzzy Syst., 2018, 26, pp. 38753883.
    44. 44)
      • 47. Yang, Y., Wu, J., Zheng, W.: ‘Station-keeping control for a stratospheric airship platform via fuzzy adaptive backstepping approach’, Adv. Space Res., 2013, 51, pp. 11571167.
    45. 45)
      • 54. Moreno, J.A., Osorio, M.: ‘A Lyapunov approach to second-order sliding mode controllers and observers’. IEEE Conf. on Decision and Control, 2008 (CDC 2008), Cancun, Mexico, 2008, pp. 28562861.
    46. 46)
      • 7. Wang, Y., Yang, X., Yan, H.: ‘Reliable fuzzy tracking control of near-space hypersonic vehicle using aperiodic measurement information’, IEEE Trans. Ind. Electron., 2019, to be published, doi: 10.1109/TIE.2019.2892696.
    47. 47)
      • 43. Liu, S., Liu, Y., Wang, N.: ‘Nonlinear disturbance observer-based backstepping finite-time sliding mode tracking control of underwater vehicles with system uncertainties and external disturbances’, Nonlinear Dyn., 2017, 88, pp. 465476.
    48. 48)
      • 30. Yong, F., Yu, X., Man, Z.: ‘Non-singular terminal sliding mode control of rigid manipulators⋆’, Automatica, 2002, 38, pp. 21592167.
    49. 49)
      • 50. Yang, J., Li, S., Sun, C., et al: ‘Nonlinear-disturbance-observer-based robust flight control for airbreathing hypersonic vehicles’, IEEE Trans. Aerosp. Electron. Syst., 2013, 49, pp. 12631275.
    50. 50)
      • 2. Won, C.H.: ‘Regional navigation system using geosynchronous satellites and stratospheric airships’, IEEE Trans. Aerosp. Electron. Syst., 2002, 38, pp. 271278.
    51. 51)
      • 15. Wen, Y., Chen, L., Liang, K., et al: ‘Nonlinear MPC for a sensorless multi-vectored propeller airship based on sliding mode observer with saturation’, Asian J. Control, 2018, 21, pp. 248263.
    52. 52)
      • 32. Xu, H., Mirmirani, M.D., Ioannou, P.A.: ‘Adaptive sliding mode control design for a hypersonic flight vehicle’, J. Guid. Control Dyn., 2004, 27, pp. 829838.
    53. 53)
      • 5. Cai, Z.L., Qu, W.D., Yu-Geng, X.I.: ‘Dynamic modeling for airship equipped with ballonets and ballast’, Appl. Math. Mech., 2005, 26, pp. 10721082.
    54. 54)
      • 41. Wang, Y., Zhou, P., Chen, J., et al: ‘Finite time attitude tracking control of an autonomous airship’, Trans. Inst. Meas. Control, 2016, 40, pp. 155162.
    55. 55)
      • 28. Farrell, J.A., Polycarpou, M., Sharma, M., et al: ‘Command filtered backstepping’, IEEE Trans. Autom. Control, 2009, 54, pp. 13911395.
    56. 56)
      • 17. Acosta, D., Joshi, S.: ‘Adaptive nonlinear dynamic inversion control of an autonomous airship for the exploration of titan’. AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, SC, USA, 20–23 August 2007, pp. 531533.
    57. 57)
      • 13. Tian, B., Liu, L., Lu, H., et al: ‘Multivariable finite time attitude control for quadrotor UAV: theory and experimentation’, IEEE Trans. Ind. Electron., 2018, 65, pp. 25672577.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2019.0195
Loading

Related content

content/journals/10.1049/iet-its.2019.0195
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading