access icon free Adaptive fuzzy optimal control for a class of active suspension systems with full-state constraints

In this study, an adaptive fuzzy inverse optimal control problem is investigated for a class of vehicle active suspension systems. Since active suspension systems have dynamic characteristics of complexities and spring non-linearities, the fuzzy logic systems are utilised to learn the unknown non-linear dynamics. In addition, there exist the constraints of the displacements of the sprung and unsprung masses, vertical vibration speeds, and current intensity in the considered suspension system, therefore, the Barrier Lyapunov functions are introduced into the control design to ensure that the full-state constraints are not overstepped. The inverse optimal control method is adopted by constructing an auxiliary system, which circumvents the assignment of solving a Hamilton–Jacobi–Bellman equation and brings about an inverse optimal controller associated with a meaningful objective functional. Based on Lyapunov stability theory and backstepping recursive design algorithm, a fuzzy adaptive optimal control scheme is developed. It is proved that the proposed control scheme not only guarantees that the vertical vibration of the vehicle is stabilised by the electromagnetic actuator but also achieves the goal of inverse optimality with regard to the cost functional. Finally, the simulation studies check the validity of the presented control strategy.

Inspec keywords: Lyapunov methods; adaptive control; control system synthesis; optimal control; control nonlinearities; fuzzy control; suspensions (mechanical components); road vehicles; nonlinear control systems

Other keywords: fuzzy adaptive optimal control scheme; auxiliary system; adaptive fuzzy inverse optimal control problem; fuzzy logic systems; Barrier Lyapunov functions; vertical vibration speeds; control design; vehicle active suspension systems; inverse optimality; spring nonlinearities; nonlinear dynamics; full-state constraints; inverse optimal controller; inverse optimal control method

Subjects: Optimal control; Nonlinear control systems; Mechanical components; Fuzzy control; Stability in control theory; Road-traffic system control; Control technology and theory (production); Control system analysis and synthesis methods; Self-adjusting control systems

References

    1. 1)
      • 25. Lin, J., Lian, R.J.: ‘Intelligent control of active suspension systems’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 618628.
    2. 2)
      • 30. Zhang, H., Cui, L., Zhang, X., et al: ‘Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method’, IEEE Trans. Neural Netw., 2011, 22, (12), pp. 22262236.
    3. 3)
      • 36. Ezal, K., Kokotovic, P.V., Teel, A.R., et al: ‘Disturbance attenuating output-feedback control of nonlinear systems with local optimality’, IEEE Trans. Autom. Control, 2009, 54, (6), pp. 13911395.
    4. 4)
      • 16. Zhu, Q., Li, L., Chen, C.J., et al: ‘Low-cost lateral active suspension system of high-speed train for ride quality based on resonant control method’, IEEE Trans. Ind. Electron., 2017, 65, (5), pp. 41874196.
    5. 5)
      • 14. Fei, J., Xin, M.: ‘Adaptive sliding mode controller for semi-active vehicle suspension system’, Int. J. Innovative Comput. Inf. Control, 2012, 8, (1), pp. 691700.
    6. 6)
      • 43. Chen, B., Liu, X.P., Ge, S.S., et al: ‘Adaptive fuzzy control of a class of nonlinear systems by fuzzy approximation approach’, IEEE Trans. Fuzzy Syst., 2012, 20, (6), pp. 10121021.
    7. 7)
      • 10. Li, H.Y., Jing, X.J., Karimi, H.R.: ‘Output-feedback-based control for vehicle suspension systems with control delay’, IEEE Trans. Ind. Electron., 2014, 61, (1), pp. 436446.
    8. 8)
      • 4. Sun, W., Zhao, Y., Li, J., et al: ‘Active suspension control with frequency band constraints and actuator input delay’, IEEE Trans. Indus. Elect., 2012, 59, (1), pp. 530537.
    9. 9)
      • 12. Na, J., Huang, Y.B., Wu, X., et al: ‘Adaptive finite-time fuzzy control of nonlinear active suspension systems with input delay’, IEEE Trans. Cybern., 2019, pp. 112, doi: 10.1109/TCYB.2019.2894724.
    10. 10)
      • 20. Sunwoo, M., Cheok, K., Huang, N.: ‘Model reference adaptive control for vehicle active suspension systems’, IEEE Trans. Ind. Electron., 1991, 38, (3), pp. 217222.
    11. 11)
      • 33. Freeman, R.A., Kokotovic, P.V.: ‘Inverse optimality in robust stabiliztion’, SIAM J. Contr. Optimiz., 1996, 34, (4), pp. 13651391.
    12. 12)
      • 45. Wang, L.X.: ‘Adaptive fuzzy systems and control’ (Prentice-Hall, Englewood Cliffs, NJ, USA, 1994).
    13. 13)
      • 13. Brezas, P., Smith, M.C.: ‘Linear quadratic optimal and risk-sensitive control for vehicle active suspensions’, IEEE Trans. Control Syst. Technol., 2014, 22, (2), pp. 543556.
    14. 14)
      • 38. Na, J., Wang, B., Li, G., et al: ‘Nonlinear constrained optimal control of wave energy converters with adaptive dynamic programming’, IEEE Trans. Ind. Electron., 2019, 66, (10), pp. 79047915, doi:10.1109/tie.2018.2880728.
    15. 15)
      • 27. Cao, J., Li, P., Liu, H.: ‘An interval fuzzy controller for vehicle active suspension systems’, IEEE Trans. Intell. Transp. Syst., 2010, 11, (4), pp. 885895.
    16. 16)
      • 3. Gao, H., Sun, W., Shi, P.: ‘Robust sampled-data control for vehicle active suspension systems’, IEEE Trans. Control Syst. Technol., 2010, 18, (1), pp. 238245.
    17. 17)
      • 9. Deshpande, V.S., Shendge, P.D., Phadke, S.B.: ‘Nonlinear control for dual objective active suspension systems’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (3), pp. 656665.
    18. 18)
      • 2. Huang, Y.B., Na, J., Wu, X., et al: ‘Approximation-free control for vehicle active suspensions with hydraulic actuator’, IEEE Trans. Ind. Electron., 2018, 65, (9), pp. 72587267.
    19. 19)
      • 39. Tong, S.C., Liu, C.L., Li, Y.M.: ‘Fuzzy adaptive decentralized output-feedback control for large-scale nonlinear systems with dynamical uncertainties’, IEEE Trans. Fuzzy Syst., 2010, 18, (5), pp. 845861.
    20. 20)
      • 17. Fialho, I., Balas, G.: ‘Road adaptive active suspension design using linear parameter-varying gain-scheduling’, IEEE Trans. Control Syst. Technol., 2002, 10, (1), pp. 4354.
    21. 21)
      • 6. Amirifar, R., Sadati, N.: ‘Low-order controller design for an active suspension system via LMIs’, IEEE Trans. Ind. Electron., 2006, 53, (2), pp. 554560.
    22. 22)
      • 1. Montazeri-Gh, M., Soleymani, M.: ‘Investigation of the energy regeneration of active suspension system in hybrid electric vehicles’, IEEE Trans. Ind. Electron., 2010, 57, (3), pp. 918925.
    23. 23)
      • 28. Huang, K., Zhang, Y.C., Yu, F.: ‘Predictive controller design for electromagnetic suspension based on mixed logical dynamical model’, J. Vibra. Control, 2012, 18, (8), pp. 11651176.
    24. 24)
      • 37. Wang, J., Ji, H.B., Xi, H.S., et al: ‘Adaptive inverse optimal control for strict-feedback nonlinear systems’, J. Univ. Sci. Technol. China, 2002, 18, (6), pp. 8086.
    25. 25)
      • 40. Tong, S.C., Li, Y.M.: ‘Observer-based fuzzy adaptive control for strict-feedback nonlinear systems’, Fuzzy Sets Syst.., 2009, 160, (12), pp. 17491764.
    26. 26)
      • 15. Al-Holou, N., Lahdhiri, T., Joo, D., et al: ‘Sliding mode neural network inference fuzzy logic control for active suspension systems’, IEEE Trans. Fuzzy Syst., 2002, 10, (2), pp. 234246.
    27. 27)
      • 7. Li, H.Y., Jing, X.J., Lam, H.K., et al: ‘Fuzzy sampled-data control for uncertain vehicle suspension systems’, IEEE Trans. Cybern., 2014, 44, (7), pp. 11111126.
    28. 28)
      • 46. Sun, K.K., Mou, S.S., Qiu, J.B., et al: ‘Adaptive fuzzy control for non-triangular structural stochastic switched nonlinear systems with full state constraints’, IEEE Trans. Fuzzy Syst., 2019, 27, (8), pp. 15871601, doi:10.1109/tfuzz.2018.2883374.
    29. 29)
      • 23. Sun, W.C., Gao, H.J., Kaynak, O.: ‘Adaptive backstepping control for active suspension systems with hard constraints’, IEEE/ASME Trans. Mechatronics, 2013, 18, (3), pp. 10721079.
    30. 30)
      • 48. Sun, W.C., Pan, H.H., Zhang, Y.F., et al: ‘Multi-objective control for uncertain nonlinear active suspension systems’, Mechatronics, 2014, 24, (4), pp. 318327.
    31. 31)
      • 11. Na, J., Huang, Y.B., Wu, X., et al: ‘Active adaptive estimation and control for vehicle suspensions with prescribed performance’, IEEE Trans. Control Syst. Technol., 2017, 26, (6), pp. 20632077.
    32. 32)
      • 35. Ezal, K., Pan, Z., Kokotovic, P.V.: ‘Locally optimal and robust backstepping design’, IEEE Trans. Autom. Control, 2000, 45, (2), pp. 260271.
    33. 33)
      • 32. Krstic, M., Modestino, J.W., Massey, J.L., et al: ‘Stabilization of nonlinear uncertain systems’ (Springer, London, UK, 1998).
    34. 34)
      • 18. Fei, Z.Y., Wang, X.D., Liu, M., et al: ‘Reliable control for vehicle active suspension systems under event-triggered scheme with frequency range limitation’, IEEE Trans. Syst. Man Cybern. A Syst., 2019, pp. 112, doi:10.1109/tsmc.2019.2899942.
    35. 35)
      • 31. Zhang, H., Cui, L., Luo, Y.: ‘Near-optimal control for nonzero-sum differential games of continuous-time nonlinear systems using singlenetwork ADP’, IEEE Trans. Cybern., 2013, 43, (1), pp. 206216.
    36. 36)
      • 44. Sui, S., Tong, S.C., Chen, C.L.P.: ‘Finite-time filter decentralized control for nonstrict-feedback nonlinear large-scale systems’, IEEE Trans. Fuzzy Syst., 2018, 26, (6), pp. 32893300.
    37. 37)
      • 19. Li, H.Y., Zhang, Z.X., Yan, H.C., et al: ‘Adaptive event-triggered fuzzy control for uncertain active suspension systems’, IEEE Trans. Cybern., 2019, 49, (12), pp. 43884397, doi:10.1109/TCYB.2018.2864776.
    38. 38)
      • 26. Wen, S., Chen, M.Z.Q., Zeng, Z.G., et al: ‘Fuzzy control for uncertain vehicle active suspension systems via dynamic sliding-mode approach’, IEEE Trans. Syst. Man Cybern. A Syst., 2017, 47, (1), pp. 2432.
    39. 39)
      • 34. Krstic, M., Li, Z. H.: ‘Inverse optimal design of input-to-state stabilizing nonlinear controllers’, IEEE Trans. Autom. Control, 1998, 43, (3), pp. 336350.
    40. 40)
      • 41. Liu, Y.J., Tong, S.C.: ‘Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints’, Automatica, 2016, 64, pp. 7075.
    41. 41)
      • 21. Huang, S.J., Chen, H.Y.: ‘Adaptive sliding controller with self-tuning fuzzy compensation for vehicle suspension control’, Mechatronics, 2006, 16, (10), pp. 607622.
    42. 42)
      • 24. Eski, I., Yildirim, S.: ‘Vibration control of vehicle active suspension system using a new robust neural network control system’, Simul. Model. Pract. Th., 2009, 17, (5), pp. 778793.
    43. 43)
      • 47. Sui, S., Chen, C.L.P., Tong, S.C.: ‘Fuzzy adaptive finite-time control design for non-triangular stochastic nonlinear systems’, IEEE Trans. Fuzzy Syst., 2019, 27, (1), pp. 172184.
    44. 44)
      • 29. Kim, E., Lee, S.: ‘Output feedback tracking control of MIMO systems using a fuzzy disturbance observer and its application to the speed control of a PM synchronous motor’, IEEE Trans. Fuzzy Syst., 2005, 13, (6), pp. 725741.
    45. 45)
      • 5. Hrovat, D.: ‘Survey of advanced suspension developments and related optimal control applications’, Automatica, 1997, 33, (10), pp. 17811817.
    46. 46)
      • 8. Pan, H., Sun, W.C., Gao, H.J., et al: ‘Finite-time stabilization for vehicle active suspension systems with hard constraints’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (5), pp. 26632672.
    47. 47)
      • 42. Tong, S.C., He, X.L., Zhang, H.G.: ‘A combined backstepping and small-gain approach to robust adaptive fuzzy output feedback control’, IEEE Trans. Fuzzy Syst., 2009, 17, (5), pp. 10591069.
    48. 48)
      • 22. Huang, Y.B., Na, J., Wu, X., et al: ‘Adaptive control of nonlinear uncertain active suspension systems with prescribed performance’, ISA Trans.., 2015, 54, pp. 20632077.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2019.0187
Loading

Related content

content/journals/10.1049/iet-its.2019.0187
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading