Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Power charging management strategy for electric vehicles based on a Stackelberg game

Increasing electric vehicles (EV) charging efficiency and reducing charging cost are important issues of EVs power management and key factor that affect the spread of EVs. Researching the competitive relationship between power grids and EV users is the key to solving this problem. Therefore, the authors propose a charging control strategy that is based on a 1-N-type Stackelberg game. In the game, power grid, retailers, and users are all able to do power decision making. Thus, the charging strategy here can flexibly meet different demands of power grid, retailers, and users. The equilibrium of the game model is solved by the inverse induction method. The benefits are compared by simulation, by the disordered charging process, and by charging control methods based on static time-sharing electricity prices. The influence of the parameters on the charging process in the game model is analysed, and the feasibility of the proposed method is verified. Results show that load peak is reduced by 34.9% while users' charging costs are reduced by 25.1%. The approaches they proposed can effectively solve the competition between the two.

References

    1. 1)
      • 20. Ma, Z., Callaway, D., Hiskens, I.: ‘Decentralized charging control of large populations of plug-in electric vehicles’, IEEE Trans. Control Syst. Technol., 2013, 21, (1), pp. 6778.
    2. 2)
      • 6. Xiao, B., Yang, X., Karimi, H.R., et al: ‘Asymptotic tracking control for a more representative class of uncertain nonlinear systems with mismatched uncertainties’, IEEE Trans. Ind. Electron., 2019, p. 1, early access.
    3. 3)
      • 2. Zhang, M., Tian, L., Yang, S.: ‘Influence of electric vehicle charging load distribution on power grid’, Power Syst. Protect. Control, 2014, 42, (21), pp. 8692.
    4. 4)
      • 11. Sortomme, E., Hindi, M.M., Macpherson, S.D., et al: ‘Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 198205.
    5. 5)
      • 21. Li, J., Li, C., Xu, Y., et al: ‘Noncooperative game-based distributed charging control for plug-in electric vehicles in distribution networks’, IEEE Trans. Ind. Inf., 2018, 14, (1), pp. 301310.
    6. 6)
      • 29. Wang, Y., Reza, K.H., Yan, H.: ‘An adaptive event-triggered synchronization approach for chaotic Lur'e systems subject to aperiodic sampled data’, IEEE Trans. Circuits Syst. II, Express Briefs, 2019, 66, (3), pp. 442446.
    7. 7)
      • 18. Li, X., Ma, R., Luo, Y.: ‘Price-based demand response of micro-grid and optimal pricing strategy based on Stackelberg game’, Power Syst. Protect. Control, 2017, 45, (5), pp. 8895.
    8. 8)
      • 25. Yang, H., Xie, X., Vasilakos, A.V.: ‘Non-cooperative and cooperative optimization of electric vehicles charging under demand uncertainty: a robust Stackelberg game’, IEEE Trans. Veh. Technol., 2015, 1, (1), pp. 115.
    9. 9)
      • 17. Qi, W., Xu, Z., Shen, Z., et al: ‘Hierarchical coordinated control of plug-in electric vehicles charging in multifamily dwellings’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 14651474.
    10. 10)
      • 13. Zhang, Q., Cai, J., Liu, C., et al: ‘Optimal control strategy of cluster charging and discharging of electric vehicles based on the priority’, Trans. China Electrotech. Soc., 2015, 30, (17), pp. 117125.
    11. 11)
      • 5. Cao, L., Qiao, D., Chen, X., et al: ‘Laplace ℓ1 Huber based cubature Kalman filter for attitude estimation of small satellite’, Acta Astronaut., 2018, 148, pp. 4856.
    12. 12)
      • 15. Wang, D., Guan, X., Wu, J., et al: ‘Vehicle driving pattern based modeling and analysis of centralized charging/discharging strategy for plug-in electric vehicles’, Power Syst. Technol., 2014, 38, (9), pp. 23222327.
    13. 13)
      • 14. Su, S., Jiang, X., Wang, W., et al: ‘Optimal energy management for microgrids considering electric vehicles and photovoltaic-energy storage’, Autom. Electr. Power Syst., 2015, 39, (9), pp. 164171.
    14. 14)
      • 3. Zhang, C., Xu, X., Sun, H., et al: ‘Smart charging strategy of large-scale electric vehicles based on adaptive genetic algorithm’, Power Syst. Protect. Control, 2014, 42, (14), pp. 1924.
    15. 15)
      • 19. Mohsenian-Rad, A., Wong, V.W.S., Jatskevich, J., et al: ‘Autonomous demand-side management based on game theoretic energy consumption scheduling for the future smart grid’, IEEE Trans. Smart Grid, 2010, 1, (3), pp. 320331.
    16. 16)
      • 10. Dubois, M.R., Desrochers, A., Denis, N.: ‘Fuzzy-based blended control for the energy management of a parallel plug-in hybrid electric vehicle’, IET Intell. Transp. Syst., 2015, 9, (1), pp. 3037.
    17. 17)
      • 31. Wu, Z., Dang, C., Karimi, H.R., et al: ‘A mixed 0–1 linear programming approach to the computation of all pure-strategy Nash equilibria of a finite n-person game in normal form’, Math. Probl. Eng., 2014, 5, pp. 18.
    18. 18)
      • 24. Yu, R., Ding, J., Zhong, W., et al: ‘PHEV charging and discharging cooperation in V2G networks: a coalition game approach’, IEEE Internet Things J., 2014, 1, (6), pp. 578589.
    19. 19)
      • 9. Qiu, J., Wei, Y., Wu, L.: ‘A novel approach to reliable control of piecewise affine systems with actuator faults’, IEEE Trans. Circuits Syst. II, Express Briefs, 2017, 64, (8), pp. 957961.
    20. 20)
      • 4. Wang, X., Shao, C., Wang, X., et al: ‘Survey of electric vehicle charging load and dispatch control strategies’, Proc. CSEE, 2013, 33, (1), pp. 111.
    21. 21)
      • 16. Xu, Z., Hu, Z., Song, Y., et al: ‘Coordinated charging of plug-in electric vehicles in charging stations’, Autom. Electr. Power Syst., 2012, 36, (11), pp. 3843.
    22. 22)
      • 30. Datta, R.S.: ‘Finding all Nash equilibria of a finite game using polynomial algebra’, Economic Theory, 2010, 42, (1), pp. 5596.
    23. 23)
      • 23. Gao, S., Chau, K.T., Liu, C., et al: ‘Integrated energy management of plug-in electric vehicles in power grid with renewables’, IEEE Trans. Veh. Technol., 2014, 63, (7), pp. 30193027.
    24. 24)
      • 27. Karimi, H.R., Chadli, M., Shi, P.: ‘Fault detection, isolation, and tolerant control of vehicles using soft computing methods’, IET Control Theory Applic., 2014, 8, (9), pp. 655657.
    25. 25)
      • 22. Liu, Z., Wu, Q., Huang, S., et al: ‘Optimal day-ahead charging scheduling of electric vehicles through an aggregative game model’, IEEE Trans. Smart Grid, 2017, 9, (5), pp. 51735184.
    26. 26)
      • 32. Moya, S.: ‘The calculation of the Stackelberg–Nash equilibrium as a fixed point problem in static hierarchical games’, Int. J. Dyn. Control, 2018, 6, (3), pp. 907918.
    27. 27)
      • 8. Qiu, J., Wei, Y., Karimi, H.R., et al: ‘Reliable control of discrete-time piecewise-affine time-delay systems via output feedback’, IEEE Trans. Reliab., 2018, 67, (1), pp. 7991.
    28. 28)
      • 12. Yang, Y., Su, S., Jiang, J., et al: ‘Dynamic optimizing strategy of coordinated charging to improve the load characteristics of distribution system’, Power Syst. Protect. Control, 2014, 42, (7), pp. 6066.
    29. 29)
      • 1. Xie, Y., Zhang, X., Luo, J., et al: ‘Evolution model for future power system under massive penetration of renewable energy’, Proc. CSEE, 2018, 38, (2), pp. 421430.
    30. 30)
      • 28. Wang, Y., Yang, X., Yan, H.: ‘Reliable fuzzy tracking control of near-space hypersonic vehicle using aperiodic measurement information’, IEEE Trans. Ind. Electron., 2019, p. 1, early access.
    31. 31)
      • 26. Karimi, H.R.: ‘Optimal vibration control of vehicle engine-body system using Haar functions’, Int. J. Control Autom. Syst., 2006, 4, (6), pp. 714724.
    32. 32)
      • 7. Cao, L., Ran, D., Chen, X., et al: ‘Huber second-order variable structure predictive filter for satellites attitude estimation’, 2019.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2019.0122
Loading

Related content

content/journals/10.1049/iet-its.2019.0122
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address