Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Urban rail transit passenger flow forecast based on LSTM with enhanced long-term features

Outbreak passenger flow is the main cause of rail transit congestion. In this regard, the accurate forecast of passenger flow in advance will facilitate the traffic control department to redeploy infrastructures. Traffic sequence is a typical time series with long temporal dependence. For instance, an emergency may cause traffic congestion for the next several hours. Only a few studies focused on the way to capture long temporal dependence of passenger flow in the rail transit system. Here, an improved model enhanced long-term features based on long-short-term memory (ELF-LSTM) neural network is proposed. It takes full advantages of LSTM Neural Network (LSTM NN) models in processing time series and overcomes its limitations in insufficient learning of long temporal dependency due to time lag. The proposed network strengthens the long temporal dependency features embedded in passenger flow data and incorporates the short-term features to predict the origin destination (OD) flow in the next hour. The experiment results show that ELF-LSTM outperforms other state-of-the-art methods in terms of forecasting.

References

    1. 1)
      • 31. Tian, Y., Pan, L.: ‘Predicting short-term traffic flow by long short term memory recurrent neural network’. 2015 IEEE Int. Conf. on Smart City/SocialCom/SustainCom (SmartCity), Chengdu, China, 2015, pp. 153158.
    2. 2)
      • 17. Hu, W., Yan, L., Liu, K., et al: ‘A short-term traffic flow forecasting method based on the hybrid PSO-SVR’, Neural Process. Lett., 2016, 43, (1), pp. 155172.
    3. 3)
      • 5. Zhang, H., Seshadri, R., Prakash, A.A., et al: ‘Improved calibration method for dynamic traffic assignment models: constrained extended Kalman filter’, Transp. Res. Rec., J. Transp. Res. Board, 2017, 2667, pp. 142153.
    4. 4)
      • 27. Zeng, X., Zhang, Y.: ‘Development of recurrent neural network considering temporal-spatial input dynamics for freeway travel time modeling’, Comput.-Aided Civ. Infrastruct. Eng., 2013, 28, (5), pp. 359371.
    5. 5)
      • 32. Fu, R., Zhang, Z., Li, L.: ‘Using LSTM NN and GRU neural network methods for traffic flow prediction’. 2016 31st Youth Academic Annual Conf. of Chinese Association of Automation (YAC), Wuhan, Hubei Province, China, 2016, pp. 324328.
    6. 6)
      • 34. Gers, F.A., Schmidhuber, J.: ‘Recurrent nets that time and count’. Proc. of the IEEE-INNS-ENNS Int. Joint Conf. on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, Como, Italy, 2000, vol. 3, pp. 189194.
    7. 7)
      • 12. Milenković, M., Švadlenka, L., Melichar, V., et al: ‘SARIMA modelling approach for railway passenger flow forecasting’, Transport, 2018, 33, (5), pp. 11131120.
    8. 8)
      • 29. Ma, X., Tao, Z., Wang, Y.H., et al: ‘Long short-term memory neural network for traffic speed prediction using remote microwave sensor data’, Transp. Res. C, Emerg. Technol., 2015, 54, pp. 187197.
    9. 9)
      • 20. Sun, B., Cheng, W., Goswami, P., et al: ‘An overview of parameter and data strategies for k-nearest neighbours based short-term traffic prediction’. Proc. of the 2017 Int.Conf. on E-Society, E-Education and E-Technology, Chengdu, China, 2017, pp. 6874.
    10. 10)
      • 13. Van Der Voort, M., Dougherty, M., Watson, S.: ‘Combining Kohonen maps with ARIMA time series models to forecast traffic flow’, Transp. Res. C, Emerg. Technol., 1996, 4, (5), pp. 307318.
    11. 11)
      • 3. Bhattacharyya, S.P., Keel, L.H.: ‘Robust control: the parametric approach’, in Ichikawa, A., Furuta, K. (Eds.): ‘Advances in control education 1994’ (Pergamon Press, Tokyo, Japan, 1995), pp. 4952.
    12. 12)
      • 6. Weigend, A.S.: ‘Time series prediction: forecasting the future and understanding the past’ (Routledge, New York, 2018, 1st edn.), p. 663.
    13. 13)
      • 36. Oliveira, T.P., Barbar, J.S., Soares, A.S.: ‘Computer network traffic prediction: a comparison between traditional and deep learning neural networks’, Int. J. Big Data Intell., 2016, 3, (1), pp. 2837.
    14. 14)
      • 16. Cai, P., Wang, Y., Lu, G., et al: ‘A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting’, Transp. Res. C, Emerg. Technol., 2016, 62, pp. 2134.
    15. 15)
      • 1. Toque, F., Come, E., El Mahrsi, M.K., et al: ‘Forecasting dynamic public transport origin-destination matrices with long-short term memory recurrent neural networks’. IEEE Int. Conf. on Intelligent Transportation Systems, Rio de Janeiro, Brazil, 2016, pp. 10711076.
    16. 16)
      • 28. Zhao, Z., Chen, W., Wu, X., et al: ‘LSTM network: a deep learning approach for short-term traffic forecast’, IET Intell. Transp. Syst., 2017, 11, (2), pp. 6875.
    17. 17)
      • 37. Wang, D., Cao, W., Li, J., et al: ‘DeepSD: supply–demand prediction for online car-hailing services using deep neural networks’. 2017 IEEE 33rd Int.Conf. on Data Engineering (ICDE), San Diego, CA, USA, 2017, pp. 243254.
    18. 18)
      • 11. Ni, M., He, Q., Gao, J.: ‘Forecasting the subway passenger flow under event occurrences with social media’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (6), pp. 16231632.
    19. 19)
      • 33. Hochreiter, S., Schmidhuber, J.: ‘Long short-term memory’, Neural Comput., 1997, 9, (8), pp. 17351780.
    20. 20)
      • 30. Zhang, D., Kabuka, M.R.: ‘Combining weather condition data to predict traffic flow: a GRU-based deep learning approach’, IET Intell. Transp. Syst.,2018, 12, (7), pp. 578585.
    21. 21)
      • 18. Moretti, F., Pizzuti, S., Panzieri, S., et al: ‘Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling’, Neurocomputing, 2015, 167, pp. 37.
    22. 22)
      • 38. Gao, H., Cheng, B., Wang, J., et al: ‘Object classification using CNN-based fusion of vision and LIDAR in autonomous vehicle environment’, IEEE Trans. Ind. Inf., 2018, 14, (9), pp. 42244231.
    23. 23)
      • 22. Castro-Neto, M., Jeong, Y.-S., Jeong, M.-K., et al: ‘Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions’, Expert Syst. Appl., 2009, 36, (3), pp. 61646173.
    24. 24)
      • 26. Peddinti, V., Povey, D., Khudanpur, S.: ‘A time delay neural network architecture for efficient modeling of long temporal contexts’. The Sixteenth Annual Conf. of the Int. Speech Communication Association, Dresden, Germany, 2015.
    25. 25)
      • 14. Lee, S., Fambro, D.B.: ‘Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting’, Transp. Res. C, Emerg. Technol., 1999, 1678, (1), pp. 179188.
    26. 26)
      • 9. Cai, C., Yao, E., Wang, M., et al: ‘Prediction of urbanrailway station's entrance and exit passenger flow based on multiplyARIMA model’, J. Beijing Jiaotong Univ., 2014, 38, (2), pp. 135140.
    27. 27)
      • 8. Feng, S., Cai, G.: ‘Passenger flow forecast of metro station based on the ARIMA model’. Proc. of the 2015 Int.Conf. on Electrical and Information Technologies for Rail Transportation, Berlin, Heidelberg, 2016, vol. 378, pp. 463470.
    28. 28)
      • 23. Fang, R.X., Yao, W.H., Zhang, X.D.: ‘Short-term traffic flow forecasting based on SVR with improved artificial fish swarm algorithm’, Appl. Mech. Mater., 2015, 734, (8), pp. 508514.
    29. 29)
      • 10. Kumar, S.V., Vanajakshi, L.: ‘Short-term traffic flow prediction using seasonal ARIMA model with limited input data’, Eur. Transp. Res. Rev., 2015, 7, (3), p. 32.
    30. 30)
      • 35. Lippi, M., Bertini, M., Frasconi, P.: ‘Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (2), pp. 871882.
    31. 31)
      • 4. Xiao, X., Yang, J., Mao, S., et al: ‘An improved seasonal rolling grey forecasting model using a cycle truncation accumulated generating operation for traffic flow’, Appl. Math. Model., 2017, 51, pp. 386404.
    32. 32)
      • 19. Kumar, K., Parida, M., Katiyar, V.K.: ‘Short term traffic flow prediction in heterogeneous condition using artificial neural network’, Transport, 2015, 30, (4), pp. 397405.
    33. 33)
      • 24. Vlahogianni, E., Karlaftis, M.G., Golias, J.C.: ‘Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach’, Transp. Res. C, Emerg. Technol., 2005, 13, (3), pp. 211234.
    34. 34)
      • 7. Xie, G., Gao, H., Qian, L., et al: ‘Vehicle trajectory prediction by integrating physics-and maneuver-based approaches using interactive multiple models’, IEEE Trans. Ind. Electron., 2018, 65, (7), pp. 59996008.
    35. 35)
      • 21. Sun, B., Cheng, W., Goswami, P., et al: ‘Short-term traffic forecasting using self-adjusting k-nearest neighbours’, IET Intell. Transp. Syst., 2017, 12, (1), pp. 4148.
    36. 36)
      • 25. Wang, M.H., Hung, C.P.: ‘Extension neural network’. Proc. of the Int. Joint Conf. on Neural Networks, Portland, OR, USA, 2003, vol. 1, pp. 399403.
    37. 37)
      • 15. Xu, F., Lin, Y., Huang, J., et al: ‘Big data driven mobile traffic understanding and forecasting: a time series approach’, IEEE Trans. Serv. Comput., 2016, 9, (5), pp. 796805.
    38. 38)
      • 2. Ding, C., Duan, J., Zhang, Y., et al: ‘Using an ARIMA-GARCH modeling approach to improve subway short-term ridership forecasting accounting for dynamic volatility’, IEEE Trans. Intell. Transp. Syst., 2018, 19, (4), pp. 111.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.5511
Loading

Related content

content/journals/10.1049/iet-its.2018.5511
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address