http://iet.metastore.ingenta.com
1887

access icon offprint Adjustable automation and manoeuvre control in automated driving

Loading full text...

Full text loading...

/deliver/fulltext/iet-its/13/12/IET-ITS.2018.5471.html;jsessionid=96u0fjounff7l.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-its.2018.5471&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Banks, V.A., Eriksson, A., O'Donoghue, J., et al: ‘Is partially automated driving a bad idea? Observations from an on-road study’, Appl. Ergon., 2018, 68, pp. 138145.
    2. 2)
      • 2. Naujoks, F., Höfling, S., Purucker, C., et al: ‘From partial and high automation to manual driving: relationship between non-driving related tasks, drowsiness and take-over performance’, Accident Anal. Prev., 2018, 121, pp. 2842.
    3. 3)
      • 3. Naujoks, F., Purucker, C., Neukum, A.: ‘Secondary task engagement and vehicle automation–comparing the effects of different automation levels in an on-road experiment’, Transp. Res. F, Traffic Psychol. Behav., 2016, 38, pp. 6782.
    4. 4)
      • 4. Greenlee, E.T., DeLucia, P.R., Newton, D.C.: ‘Driver vigilance in automated vehicles: hazard detection failures are a matter of time’, Hum. Factors, 2018, 60, (4), pp. 465476.
    5. 5)
      • 5. Vogelpohl, T., Kühn, M., Hummel, T., et al: ‘Asleep at the automated wheel—sleepiness and fatigue during highly automated driving’, Accident Anal. Prev., 2019, 126, pp. 7084.
    6. 6)
      • 6. de Winter, J.C.F., Happee, R., Martens, M.H., et al: ‘Effects of adaptive cruise control and highly automated driving on workload and situation awareness: a review of the empirical evidence’, Transp. Res. F, Traffic Psychol. Behav., 2014, 27, pp. 196217.
    7. 7)
      • 7. Flemisch, F., Altendorf, E., Canpolat, Y., et al: ‘Uncanny and unsafe valley of assistance and automation: first sketch and application to vehicle automation’, in Schlick, C., et al (Eds): ‘Advances in ergonomic design of systems, products and processes’ (Springer, Berlin, Heidelberg, 2017), pp. 319334.
    8. 8)
      • 8. Gonçalves, J., Bengler, K.: ‘Driver state monitoring systems–transferable knowledge manual driving to HAD’, Procedia Manuf., 2015, 3, pp. 30113016.
    9. 9)
      • 9. Mbouna, R.O., Kong, S.G., Chun, M.G.: ‘Visual analysis of eye state and head pose for driver alertness monitoring’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (3), pp. 14621469.
    10. 10)
      • 10. Fleming, B.: ‘New automotive electronics technologies’, IEEE Veh. Technol. Mag., 2012, 7, pp. 412. http://dx.doi.org/10.1109/mvt.2012.2218144.
    11. 11)
      • 11. Habibovic, A., Andersson, J., Nilsson, J., et al: ‘Command-based driving for tactical control of highly automated vehicles’, Adv. Hum. Asp. Transp., 2017, 484, pp. 499510.
    12. 12)
      • 12. Flemisch, F., Adams, C.A., Conway, S.R., et al: ‘The H-Metaphor as a guideline for vehicle automation and interaction’, NASA Technical report, 2003, NASA/TM-2003-212672.
    13. 13)
      • 13. Flemisch, F., Heesen, M., Hesse, T., et al: ‘Towards a dynamic balance between humans and automation: authority, ability, responsibility and control in shared and cooperative control situations’, Cogn. Technol. Work, 2012, 14, (1), pp. 318.
    14. 14)
      • 14. Terken, J., Levy, P., Wang, C., et al: ‘Gesture-based and haptic interfaces for connected and autonomous driving’, Adv. Hum. Factors Syst. Interact., 2017, 497, pp. 107115.
    15. 15)
      • 15. Kienle, M., Damböck, D., Kelsch, J., et al: ‘Towards an H-mode for highly automated vehicles: driving with side sticks’. Proc. of the 1st Int. Conf. on Automotive User Interfaces and Interactive Vehicular Applications, Essen, Germany, 2009, pp. 1923.
    16. 16)
      • 16. Flemisch, F.O., Bengler, K., Bubb, H., et al: ‘Towards cooperative guidance and control of highly automated vehicles: H-mode and conduct-by-wire’, Ergonomics, 2014, 57, (3), pp. 343360.
    17. 17)
      • 17. Endsley, M.R.: ‘Autonomous driving systems: a preliminary naturalistic study of the tesla model S’, J. Cogn. Eng. Decis. Mak., 2017, 11, (3), pp. 225238.
    18. 18)
      • 18. Siebert, F.W., Oehl, M., Höger, R., et al: ‘Discomfort in automated driving–the disco-scale’. Int. Conf. on Human-Computer Interaction, Las Vegas, NV, USA, 2013, pp. 337341.
    19. 19)
      • 19. Siebert, F.W., Oehl, M., Pfister, H.R.: ‘The influence of time headway on subjective driver states in adaptive cruise control’, Transp. Res. F, Traffic Psychol. Behav., 2014, 25, pp. 6573.
    20. 20)
      • 20. Siebert, F.W., Oehl, M., Bersch, F., et al: ‘The exact determination of subjective risk and comfort thresholds in car following’, Transp. Res. F, Traffic Psychol. Behav., 2017, 46, pp. 113.
    21. 21)
      • 21. Siebert, F.W., Wallis, F.L.: ‘How speed and visibility influence preferred headway distances in highly automated driving’, Transp. Res. F, Traffic Psychol. Behav., 2019, 64, pp. 485494.
    22. 22)
      • 22. Siebert, F.W., Radtke, F., Kiyonaga, E., et al: ‘Keeping drivers engaged in automated driving through maneuver control - effects on perceived control and responsibility’. Paper presented at the 6th Int. Conf. of Driver Distraction and Inattention, Gothenburg, Sweden, 2018.
    23. 23)
      • 23. Vogel, K.: ‘A comparison of headway and time to collision as safety indicators’, Accident Anal. Prev., 2003, 35, (3), pp. 427433.
    24. 24)
      • 24. Society of Automotive Engineers: ‘Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles’, Surf. Veh. Recommended Pract., 2018, J3016, pp. 135https://www.sae.org/standards/content/j3016_201806/.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.5471
Loading

Related content

content/journals/10.1049/iet-its.2018.5471
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address