Vision-based inter-vehicle distance estimation for driver alarm system

Vision-based inter-vehicle distance estimation for driver alarm system

For access to this article, please select a purchase option:

Buy eFirst article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Determining the position of the vehicles on road is an important information in the driver assistance system which is used to increase driver's safety. The authors propose a robust real-time vehicle detection and distance estimation method for vision-based driving assistance system. They detect the vehicles in front of their own and estimate their three-dimensional position by using a single monochrome camera. After detecting the preceding vehicles using the common method, they use a new method for distance measurement based on monocular camera to estimate the inter-vehicle distance. The method also provides the longitudinal distance information for the driver alarm system. Finally, they utilise the Kalman framework to update the information of the vehicle which they detected before, the information includes horizontal distance, vertical distance and speed, and use these information to predict risk. Experimental results indicate that the system correctly detects vehicles in real time and effectively estimates the position of preceding vehicles.


    1. 1)
      • 1. Cao, Y, Wang, N.: ‘Towards efficient electric vehicle charging using VANET-based information dissemination’, IEEE Trans. Veh. Technol., 2016, PP, (99), p. 1.
    2. 2)
      • 2. Cao, Y, Han, C, Zhang, X, et al: ‘A trajectory-driven opportunistic routing protocol for VCPS’, IEEE Trans. Aerosp. Electron. Syst., 2018, PP, (99), p. 1.
    3. 3)
      • 3. Abdagic, A., Tanovic, O., Aksamovic, A., et al: ‘Counting traffic using optical flow algorithm on video footage of a complex crossroad’. Conf. Record of IEEE Int. Conf. Electronics in Marine (ELMAR), Zadar, Croatia, October 2010, pp. 4145.
    4. 4)
      • 4. Unzueta, L., Nieto, M., Cortes, A., et al: ‘Adaptive multi-cue background subtraction for robust vehicle counting and classification’, IEEE Trans. Intell. Transp. Syst., 2012, 13, (2), pp. 527540.
    5. 5)
      • 5. Zhang, Z., Luo, J.Y., Gao, W.S.: ‘A device using cameras ranging method’, The TV set: Patent CN103063193A, China, 2013.
    6. 6)
      • 6. Kim, G., Cho, J.–S.: ‘Vision-based vehicle detection and inter-vehicle distance estimation for driver alarm system’, Opt. Rev., 2012, 19, (6), pp. 388393.
    7. 7)
      • 7. Huang, S.S., Chen, C.J., Hsiao, P.Y., et al: ‘On-board vision system for lane recognition and front-vehicle detection to enhance driver's awareness’. IEEE Int. Conf. Robotics and Automation, New Orleans, LA, USA, 2004, vol. 3, pp. 24562461.
    8. 8)
      • 8. Sun, Z., Bebis, G., Miller, R.: ‘Improving the performance of on road vehicle detection by combining Gabor and wavelet features’. IEEE Int. Conf. Intelligent Transportation Systems, Singapore, 2002, pp. 130135.
    9. 9)
      • 9. Sun, Z., Bebis, G., Miller, R.: ‘On road vehicle detection using Gabor filters and support vector machines’. Int. Conf. Digital Signal Processing, Santorini, Greece, 2002, vol. 2, pp. 10191022.
    10. 10)
      • 10. Batavia, P.H., Pomerleau, D.A., Thorpe, C.E.: ‘Overtaking vehicle detection using implicit optical flow’. IEEE Conf. Intelligent Transportation Systems, Boston, MA, USA, 1997, pp. 729734.
    11. 11)
      • 11. Chang, H.Y., Fu, C.M., Huang, C.L.: ‘Real-time vision-based preceding vehicle tracking and recognition’. IEEE Intelligent Vehicles Symp., Las Vegas, NV, USA, 2005, pp. 514519.
    12. 12)
      • 12. Yang, H, Qu, S.: ‘Real-time vehicle detection and counting in complex traffic scenes using background subtraction model with low-rank decomposition’, IET Intell. Transp. Syst., 2018, 12, (1), pp. 7585.
    13. 13)
      • 13. Haselhoff, A., Kummert, A.: IEEE Intelligent Vehicles Symp., Xi'an, China, 2009, p. 261.
    14. 14)
      • 14. Viola, P., Jones, M.: ‘Robust real-time face detection’, Int. J. Comput. Vis., 2004, 57, p. 137.
    15. 15)
      • 15. Sun, Z., Bebis, G., Miller, R.: ‘On-Road Vehicle Detection: A Review’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, p. 694.
    16. 16)
      • 16. Pang, Y., Zhao, Y., Chen, J., et al: ‘Viewing distance measurement using a single camera’. Information Technology and Artificial Intelligence Conf., Chongqing, China, 2015, pp. 512515.
    17. 17)
      • 17. Ren, J.Q., Chen, Y.Z.: ‘Multiple objects parameter detection in urban mixed traffic scene’, J. Transp. Inf. Saf., 2009, 27, pp. 4754.
    18. 18)
      • 18. Hasan, A., Hamzah, R., Joha, M.: Int. Conf. on Computer Technology & Development, Kota, Malaysia, 2009, p. 465.
    19. 19)
      • 19. Ponsa, D., Lopez, A.: ‘3D vehicle sensor based on monocular vision’. IEEE Conf. Intelligent Transportation Systems, Vienna, Austria, 2005.
    20. 20)
      • 20. Mazor, E., Averbuch, A., Bar-Shalom, Y., et al: ‘Interacting multiple model methods in target tracking: a survey’, IEEE Trans. Aerosp. Electron. Syst., 1998, 34, (1), pp. 103123.
    21. 21)
      • 21. Hartley, R.I., Zisserman, A.: ‘Multiple view geometry in computer Vision’ (Cambridge University Press, Cambridge, UK, 2004, 2nd edn.), ISBN: 0521540518.
    22. 22)
      • 22. Bouguet, J.: ‘Camera calibration toolbox for MATLAB’. MRL – Intel Corp., October 2004. Available at accessed October 1, 2016.

Related content

This is a required field
Please enter a valid email address