access icon free Impact assessments of intelligent transport system performance in a freight transport corridor

Transport network infrastructure including the use of Intelligent Transport Systems (ITS) is fundamental to the mobility of people and shipments. This study aims at understanding how different ITS measures may impact multiple traffic engineering goals with respect to a set of Key Performance Indicators (KPIs). The ordering of KPIs is determined by the preferences of the decision maker. A Multi-Criteria Decision Analysis framework is proposed for impact assessments of ITS measures. Data about KPIs is derived with the help of traffic data gathered from the Gothenburg Region. Comparing the contributions of ITS measures to different goals suggest that the management of flow and speed in a road network is crucial for improving capacity utilisation. The goal assessments are then projected onto different use-cases in terms of socio-economic impacts. The result indicates that corridor section traffic management, transport management (focusing on transit traffic) and urban gate-way will generate socio-economic effects, respectively, in a decreasing order. Urban gateway is particularly interesting because it is the least intrusive and less costly use-case.

Inspec keywords: freight handling; socio-economic effects; intelligent transportation systems; road traffic; production engineering computing; traffic engineering computing

Other keywords: traffic data; freight transport; urban gateway; transport management; road network; multicriteria decision analysis framework; key performance indicators; people mobility; KPI; multiple traffic engineering goals; ITS measures; impact assessments; corridor section traffic management; socio-economic impacts; Gothenburg Region; intelligent transport system performance; flow management; shipment mobility; capacity utilisation; transit traffic; transport network infrastructure

Subjects: Economics; Goods distribution; Production engineering computing; Social and political issues; Traffic engineering computing; Industrial applications of IT

References

    1. 1)
      • 10. Transportstyrelsen.: ‘Statistik trängselskatt göteborg 2017’, The Swedish Transport Agency https://www.transportstyrelsen.se/sv/vagtrafik/statistik/trangselskatt11/goteborg/, 2017.
    2. 2)
      • 2. Mbiydzenyuy, G.: ‘Potential impact assessments of Intelligent Transport System performance in a freight corridor’, ERITS Report, 2017.
    3. 3)
      • 18. Mbiydzenyuy, G., Persson, J.A., Davidsson, P.: ‘Optimization analysis of multiservice architecture concepts in road transport telematics’, J. Intell. Transp. Syst., 2012, 16, (4), pp. 197210.
    4. 4)
      • 3. De Brucker, K., Verbeke, A., Macharis, C.: ‘The applicability of multicriteria-analysis to the evaluation of intelligent transport systems (ITS)’, Res. Transp. Econ., 2004, 8, pp. 151179.
    5. 5)
      • 7. Mbiydzenyuy, G., Persson, J.A., Davidsson, P., et al: ‘Method for quantitative valuation of road freight transport telematic services’, IET Intell. Transp. Syst., 2012, 6, (4), pp. 388396.
    6. 6)
      • 17. Russo, F., Comi, A.: ‘A model system for the ex-ante assessment of city logistics measures’, Res. Transp. Econ., 2011, 31, (1), pp. 8187.
    7. 7)
      • 1. ERITS.: ‘Sweden-Italy Freight Transport and Logistics Green Corridor – An Efficient and Reliable Freight Transport system through ITS–ITS measures for the Swiftly Green Toolbox’, Grant Agreement N°: 2012-EU-94167-S. Final Report Webpage- http://www.swiftlygreen.eu, 2017.
    8. 8)
      • 5. Agusdinata, D.B., van Der Pas, J.W.G.M., Walker, W.E., et al: ‘Multi-criteria analysis for evaluating the impacts of intelligent speed adaptation’, J. Adv. Transp., 2009, 43, (4), pp. 413454.
    9. 9)
      • 16. Filippi, F., Nuzzolo, A., Comi, A., et al: ‘Ex-ante assessment of urban freight transport policies’, Procedia-Soc. Behav. Sci., 2010, 2, (3), pp. 63326342.
    10. 10)
      • 9. Trafa.: ‘Tillgänglighet till terminaler i västra götaland – en pilotstudie. PM 2016:9’, The Swedish Government Agency for Transport Policy Analysis, Sweden, 2016.
    11. 11)
      • 8. Tu, H., Van Lint, J., Van Zuylen, H.: ‘Impact of traffic flow on travel time variability of freeway corridors’, Transp. Res. Rec., J. Transp. Res. Board, 2007, 1993, pp. 5966.
    12. 12)
      • 15. Dyer, J.S.: ‘MAUT – multiattribute utility theory’, in ‘Multiple criteria decision analysis: state of the art surveys’ (Springer, New York, 2005), pp. 265292.
    13. 13)
      • 13. Stevens, A.: ‘The application and limitations of cost-benefit assessment (CBA) for intelligent transport systems’, Res. Transp. Econ., 2004, 8, pp. 91111.
    14. 14)
      • 19. Diviz workbench https://www.decision-deck.org/diviz/.
    15. 15)
      • 11. Hellberg, S., Jonsson, P.B.: ‘Gothenburg 2035. Transport Strategy for a Close-Knit City’, Adopted by the Urban Transport Committee on February 6, 2014. reg. no. 0894/11 ISSN 1103–1530, 2014.
    16. 16)
      • 12. Linkov, I., Satterstrom, F.K., Kiker, G., et al: ‘From comparative risk assessment to multi-criteria decision analysis and adaptive management: recent developments and applications’, Environ. Int., 2006, 32, (8), pp. 10721093.
    17. 17)
      • 4. Pérez, J.C., Carrillo, M.H., Montoya-Torres, J.R.: ‘Multi-criteria approaches for urban passenger transport systems: a literature review’, Ann. Oper. Res., 2015, 226, (1), pp. 6987.
    18. 18)
      • 14. Velasquez, M., Hester, P.T.: ‘An analysis of multi-criteria decision making methods’, Int. J. Oper. Res., 2013, 10, (2), pp. 5666.
    19. 19)
      • 6. ASEK 6.0.: ‘Analysmetod och samhällsekonomiska kalkylvärden för transportsektorn: version 2016-04-01’.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.5307
Loading

Related content

content/journals/10.1049/iet-its.2018.5307
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading