http://iet.metastore.ingenta.com
1887

Real-time energy management for commute HEVs using modified A-ECMS with traffic information recognition

Real-time energy management for commute HEVs using modified A-ECMS with traffic information recognition

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

To further improve fuel consumption performance of hybrid electric vehicles (HEVs) running on commute route in the face of time-varying traffic information, this paper investigates a real-time energy management strategy based on the adaptive equivalent consumption minimization strategy (A-ECMS) framework with traffic information recognition. The proposed management strategy integrates the global near optimization and the real-time performance. The simple traffic recognition is constructed by utilising k-means clustering algorithm to deal with the historical traffic data to form four clusters. The adaptive equivalence factor of the A-ECMS is designed as a three-dimensional mapping on each cluster and the system states by employing stochastic dynamic programming (SDP) policy iteration to solve offline the stochastic optimal control problem formulated by each cluster statistical characteristic. In real-time energy management controller online, the instantaneous power split is performed by the ECMS with a proper equivalent factor, which is obtained from mappings according to the cluster recognised by the current traffic situation and the state-of-charge (SOC). The effectiveness of the designed control strategy is verified by the simulation test conducted on GT-suite HEV simulator over real driving cycles.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.5274
Loading

Related content

content/journals/10.1049/iet-its.2018.5274
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address