http://iet.metastore.ingenta.com
1887

access icon openaccess Car detection and classification using cascade model

  • HTML
    163.2255859375Kb
  • XML
    168.0771484375Kb
  • PDF
    3.0709228515625MB
Loading full text...

Full text loading...

/deliver/fulltext/iet-its/12/10/IET-ITS.2018.5270.html;jsessionid=k8e9nyoea8i1.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-its.2018.5270&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Kong, X., Xia, F., Ning, Z., et al: ‘Mobility dataset generation for vehicular social networks based on floating car data’, IEEE Trans. Veh. Technol., 2018, PP, (99), p. 1.
    2. 2)
      • 2. Rahim, A., Kong, X., Xia, F., et al: ‘Vehicular social networks: a survey’, Pervasive Mob. Comput., 2017, 43, pp. 96113.
    3. 3)
      • 3. Kong, X., Song, X., Xia, F., et al: ‘LoTAD: long-term traffic anomaly detection based on crowd sourced bus trajectory data’, World Wide Web-Internet Web Inf. Syst., 2017, 21, (3), pp. 123.
    4. 4)
      • 4. Felzenszwalb, P.F., Girshick, R.B., Mcallester, D., et al: ‘Object detection with discriminatively trained part-based models’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (9), p. 1627.
    5. 5)
      • 5. Pepik, B., Stark, M., Gehler, P., et al: ‘Teaching 3D geometry to deformable part models’. IEEE Conf. Computer Vision and Pattern Recognition, 2012, pp. 33623369.
    6. 6)
      • 6. Hoai, M., Zisserman, A.: ‘Discriminative sub-categorization’. IEEE Conf. Computer Vision and Pattern Recognition, 2013, pp. 16661673.
    7. 7)
      • 7. Balthazor, R.L., Mcharg, M.G., Enloe, C.L., et al: ‘Methodology of evaluating the science benefit of various satellite/sensor constellation orbital parameters to an assimilative data forecast model’, Radio Sci., 2016, 50, (4), pp. 318326.
    8. 8)
      • 8. Simon, M., Rodner, E.: ‘Neural activation constellations: unsupervised part model discovery with convolutional networks’, Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Washington, DC, USA, 2015, pp. 11431151.
    9. 9)
      • 9. Martins, J.C., Caeiro, J.J., Sousa, L.A.: ‘Nonlinear system identification using constellation based multiple model adaptive estimators’. Signal Processing Conf., 2014, pp. 12171221.
    10. 10)
      • 10. Krause, A., Guestrin, C. E.: ‘Near-optimal nonmyopic value of information in graphical models’, Comput. Sci., 2012, 35, (1), pp. 557591.
    11. 11)
      • 11. Sande, K.E.A.V.D., Uijlings, J.R.R., Gevers, T., et al: ‘Segmentation as selective search for object recognition’. Proc./IEEE Int. Conf. Computer Vision, 2011, pp. 18791886.
    12. 12)
      • 12. Girshick, R.B., Felzenszwalb, P.F., Mcallester, D.: ‘Object detection with grammar models’. Int. Conf. Neural Information Processing Systems, 2011, pp. 442450.
    13. 13)
      • 13. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’, Comput. Sci., 2014.
    14. 14)
      • 14. Gu, C., Ren, X.: ‘Discriminative mixture-of-templates for viewpoint classification’. Computer Vision – ECCV 2010 – European Conf. Computer Vision, Proc. DBLP, Heraklion, Crete, Greece, 5–11 September 2010, pp. 408421.
    15. 15)
      • 15. Sermanet, P., Kavukcuoglu, K., Chintala, S., et al: ‘Pedestrian detection with unsupervised multi-stage feature learning’. Computer Vision and Pattern Recognition, 2013, pp. 36263633.
    16. 16)
      • 16. Pedersoli, M., Gonzalez, J., Hu, X., et al: ‘Toward real-time pedestrian detection based on a deformable template model’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (1), pp. 355364.
    17. 17)
      • 17. Hsieh, J.W., Chen, L.C., Chen, D.Y., et al: ‘Vehicle make and model recognition using symmetrical SURF’. IEEE Int. Conf. Advanced Video and Signal Based Surveillance, 2013, pp. 472477.
    18. 18)
      • 18. Saravi, S., Edirisinghe, E.A.: ‘Vehicle make and model recognition in CCTV footage’. Int. Conf. Digital Signal Processing, 2013, pp. 16.
    19. 19)
      • 19. Hsiao, E., Sinha, S.N., Ramnath, K., et al: ‘Car make and model recognition using 3D curve alignment’. Applications of Computer Vision, 2014, p. 1.
    20. 20)
      • 20. Zhang, H.B., Hai-Ling, L.I., Huang, X.T., et al: ‘Research and implementation of vehicle-type recognition method based on HOG features of vehicle frontal face’, Comput. Simul., 2015.
    21. 21)
      • 21. Cai, Y., Wang, H., Chen, L., et al: ‘Robust vehicle recognition algorithm using visual saliency and deep convolutional neural networks’, Jiangsu Daxue Xuebao, 2015, 36, (3), pp. 331336.
    22. 22)
      • 22. Jia, Y.: ‘Caffe: an open source convolutional architecture for fast feature embedding’, 2014. Available at http://caffe.berkeleyvision.org/, accessed January 2017.
    23. 23)
      • 23. Wang, L., Guo, S., Huang, W., et al: ‘Places205-VGGNet models for scene recognition’, arXiv:1508.01667.
    24. 24)
      • 24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘ImageNet classification with deep convolutional neural networks’, Adv. Neural. Inf. Process. Syst., 2012, 25, p. 2012.
    25. 25)
      • 25. Prior, I.S.D.: ‘3D object proposals for accurate object class detection’, Lect. Notes Bus. Inf. Process., 2015, 122, pp. 3445.
    26. 26)
      • 26. Chen, X., Kundu, K., Zhang, Z., et al: ‘Monocular 3D object detection for autonomous driving’. IEEE Conf. Computer Vision and Pattern Recognition, 2016, pp. 21472156.
    27. 27)
      • 27. Yang, F., Choi, W., Lin, Y.: ‘Exploit all the layers: fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers’. Computer Vision and Pattern Recognition, 2016, pp. 21292137.
    28. 28)
      • 28. Cai, Z., Fan, Q., Feris, R.S., et al: ‘A unified multi-scale deep convolutional neural network for fast object detection’, 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016, pp. 354370.
    29. 29)
      • 29. Ren, J., Chen, X., Liu, J., et al: ‘Accurate single stage detector using recurrent rolling convolution’, arXiv:1704.05776, 2017.
    30. 30)
      • 30. Chabot, F., Chaouch, M., Rabarisoa, J., et al: ‘Deep MANTA: a coarse-to-fine many-task network for joint 2D and 3D vehicle analysis from monocular image’. IEEE Conf. Computer Vision and Pattern Recognition, 2017, pp. 18271836.
    31. 31)
      • 31. Krause, J., Stark, M., Jia, D., et al: ‘3D object representations for fine-grained categorization’. IEEE Int. Conf. Computer Vision Workshops, 2014, pp. 554561.
    32. 32)
      • 32. Donahue, J., Jia, Y., Vinyals, O., et al: ‘DeCAF: a deep convolutional activation feature for generic visual recognition’ (University of California Berkeley Brigham Young University, 2013), pp. 647655.
    33. 33)
      • 33. Zhou, Y., Cheung, N.M.: ‘Vehicle classification using transferable deep neural network features’, arXiv preprint arXiv: (1601.01145), 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.5270
Loading

Related content

content/journals/10.1049/iet-its.2018.5270
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address