access icon free PM and PAHs emissions of ship auxiliary engine fuelled with waste cooking oil biodiesel and marine gas oil

Clean fuels are recommended for ships at berth to reduce air pollutant emissions. This study aimed to evaluate the feasibility of waste cooking oil (WCO) biodiesel application on board with regard to particle matter (PM) and polycyclic aromatic hydrocarbon (PAH) emissions. An experiment was conducted on a marine auxiliary engine for three different fuels: WCO biodiesel, formulation blends with marine gas oil (MGO) and neat MGO. Results revealed that WCO biodiesel could reduce PM and PAHs emissions. WCO exhaust also exhibited differences in PAH profile and phase distribution as compared to MGO, depending on the operation modes and the proportion of biodiesel in the formulation blends. Consequently, WCO biodiesel could dramatically reduce the total carcinogenic potencies related to PAHs of exhausts. Moreover, PAH source recognition pair ratios of tested fuels were observed to deviate from the widely accepted values. This study highlights that WCO biodiesel is a cleaner fuel for operating ship auxiliary engines with respect to PM and PAHs emissions and has the potential to moderate the severe effects of PM and PAHs on an air of coastal areas.

Inspec keywords: ships; diesel engines; blending; waste reduction; air pollution control; recycling; health hazards; petroleum; materials testing; biofuel

Other keywords: clean fuels; formulation blends; waste cooking oil biodiesel application; ship auxiliary engine; particle matter emission; phase distribution; coastal areas; polycyclic aromatic hydrocarbon emissions; PAH source recognition pair ratios; WCO biodiesel; air pollutant emission reduction; marine auxiliary engine; total carcinogenic potencies; marine gas oil

Subjects: Health and safety aspects; Recycling; Environmental issues; Engines; Engineering materials; Testing

References

    1. 1)
      • 14. Yang, Y., Fu, T., Bao, W., et al: ‘Life cycle analysis of greenhouse gas and Pm2.5 emissions from restaurant waste oil used for biodiesel production in China’, Bioenergy Res., 2016, 10, (1), pp. 199207.
    2. 2)
      • 27. Lee, R., Pedley, J., Hobbs, C.: ‘Fuel quality impact on heavy duty diesel emissions: a literature review’. SAE Technical Paper 982649, 1998, doi: 10.4271/982649.
    3. 3)
      • 18. Su, P.H., Lv, B.Y., Tomy, G.T., et al: ‘Occurrences, composition profiles and source identifications of polycyclic aromatic hydrocarbons (pahs), polybrominated diphenyl ethers (pbdes) and polychlorinated biphenyls (pcbs) in ship ballast sediments’, Chemosphere, 2017, 168, pp. 14221429.
    4. 4)
      • 1. Radischat, C., Sippula, O., Stengel, B., et al: ‘Real-Time analysis of organic compounds in ship engine aerosol emissions using resonance-enhanced multiphoton ionisation and proton transfer mass spectrometry’, Anal. Bioanal. Chem., 2015, 407, (20), pp. 59395951.
    5. 5)
      • 5. Petzold, A., Lauer, P., Fritsche, U., et al: ‘Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting climate effects’, Environ. Sci. Technol., 2011, 45, (24), pp. 1039410400.
    6. 6)
      • 34. Cooper, D.A.: ‘Exhaust emissions from ships at berth’, Atmos. Environ., 2003, 37, (27), pp. 38173830.
    7. 7)
      • 9. Shameer, P.M., Ramesh, K., Sakthivel, R., et al: ‘Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: a review’, Renew. Sust. Energy Rev., 2017, 67, pp. 12671281.
    8. 8)
      • 38. U.S. EPA: ‘Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons’ (U.S. EPA, 1993).
    9. 9)
      • 2. Streibel, T., Schnelle-Kreis, J., Czech, H., et al: ‘Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil’, Environ. Sci. Pollut. Res., 2017, 24, (12), pp. 1097610991.
    10. 10)
      • 6. Nurun, N.M., Einar, H.J.: ‘Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel’, Environ. Technol., 2012, 33, (1), pp. 915.
    11. 11)
      • 19. Zare, A., Nabi, M.N., Bodisco, T.A., et al: ‘The effect of triacetin as a fuel additive to waste cooking biodiesel on engine performance and exhaust emissions’, Fuel, 2016, 182, pp. 640649.
    12. 12)
      • 31. Zhang, K., Zhang, B.Z., Li, S.M., et al: ‘Diurnal and seasonal variability in size-dependent atmospheric deposition fluxes of polycyclic aromatic hydrocarbons in an urban center’, Atmos. Environ., 2012, 57, pp. 4148.
    13. 13)
      • 3. Sippula, O., Stengel, B., Sklorz, M., et al: ‘Particle emissions from a marine engine: chemical composition and aromatic emission profiles under various operating conditions’, Environ. Sci. Technol., 2014, 48, (19), pp. 1172111729.
    14. 14)
      • 13. Qu, L., Wang, Z., Zhang, J.: ‘Influence of waste cooking oil biodiesel on oxidation reactivity and nanostructure of particulate matter from diesel engine’, Fuel, 2016, 181, pp. 389395.
    15. 15)
      • 35. Agrawal, H., Welch, W.A., Miller, J.W., et al: ‘Emission measurements from a crude oil tanker at sea’, Environ. Sci. Technol., 2008, 42, (19), pp. 70987103.
    16. 16)
      • 20. Di Natale, F., Carotenuto, C.: ‘Particulate matter in marine diesel engines exhausts: emissions and control strategies’, Transp. Res. D, Transp. Environ., 2015, 40, pp. 166191.
    17. 17)
      • 15. Gabiña, G., Martin, L., Basurko, O.C., et al: ‘Waste oil-based alternative fuels for marine diesel engines’, Fuel Process. Technol., 2016, 153, pp. 2836.
    18. 18)
      • 22. Chang, Y.C., Lee, W.J., Wang, L.C., et al: ‘Effects of waste cooking oil-based biodiesel on the toxic organic pollutant emissions from a diesel engine’, Appl. Energy, 2014, 113, pp. 631638.
    19. 19)
      • 7. Khan, M.Y., Russell, R.L., Welch, W.A., et al: ‘Impact of algae biofuel on in-use gaseous and particulate emissions from a marine vessel’, Energy Fuels, 2012, 26, (10), pp. 61376143.
    20. 20)
      • 36. Agrawal, H., Welch, W.A., Henningsen, S., et al: ‘Emissions from main propulsion engine on container ship at sea’, J. Geophys. Res., 2010, 115, p. D23205.
    21. 21)
      • 29. Lohmann, R., Harner, T., Thomas, G.O., et al: ‘A comparative study of the Gas-particle partitioning of pcdd/Fs, pcbs, and pahs’, Environ. Sci. Technol., 2000, 34, (23), pp. 49434951.
    22. 22)
      • 24. Tree, D.R., Svensson, K.I.: ‘Soot processes in compression ignition engines’, Prog. Energy Combust. Sci., 2007, 33, (3), pp. 272309.
    23. 23)
      • 23. Lu, T., Huang, Z., Cheung, C.S., et al: ‘Size distribution of Ec, Oc and particle-phase pahs emissions from a diesel engine fueled with three fuels’, Sci. Total Environ., 2012, 438, pp. 3341.
    24. 24)
      • 12. Man, X.J., Cheung, C.S., Ning, Z., et al: ‘Influence of engine load and speed on regulated and unregulated emissions of a diesel engine fueled with diesel fuel blended with waste cooking oil biodiesel’, Fuel, 2016, 180, pp. 4149.
    25. 25)
      • 10. Can, Ö.: ‘Combustion characteristics, performance and exhaust emissions of a diesel engine fueled with a waste cooking oil biodiesel mixture’, Energy Convers. Manage., 2014, 87, pp. 676686.
    26. 26)
      • 26. Guarieiro, A.L.N., Santos, J.V.d.S., Eiguren-Fernandez, A., et al: ‘Redox activity and Pah content in size-classified nanoparticles emitted by a diesel engine fuelled with biodiesel and diesel blends’, Fuel, 2014, 116, pp. 490497.
    27. 27)
      • 16. Corbett, J.J., Winebrake, J.J., Green, E.H., et al: ‘Mortality from ship emissions – a global assessment’, Environ. Sci. Technol., 2007, 41, pp. 85128518.
    28. 28)
      • 30. Burkart, K., Nehls, I., Win, T., et al: ‘The carcinogenic risk and variability of particulate-bound polycyclic aromatic hydrocarbons with consideration of meteorological conditions’, Air Qual., Atmos. Health, 2011, 6, (1), pp. 2738.
    29. 29)
      • 32. Leermakers, C.A.J., Musculus, M.P.B.: ‘In-Cylinder soot precursor growth in a low-temperature combustion diesel engine: laser-induced fluorescence of polycyclic aromatic hydrocarbons’, Proc. Combus. Inst., 2015, 35, (3), pp. 30793086.
    30. 30)
      • 25. Ladommatos, N., Rubenstein, P., Harrison, K., et al: ‘The effect of aromatic hydrocarbons on soot formation in laminar diffusion flames and in a diesel engine’, J. Inst. Energy, 1997, 70, (484), pp. 8494.
    31. 31)
      • 37. Graboski, M.S., McCormick, R.L.: ‘Combustion of fat and vegetable oil derived fuels in diesel engines’, Prog. Energy Combust. Sci., 1998, 24, pp. 125164.
    32. 32)
      • 11. Behçet, R., Yumrutaş, R., Oktay, H.: ‘Effects of fuels produced from fish and cooking oils on performance and emissions of a diesel engine’, Energy, 2014, 71, pp. 645655.
    33. 33)
      • 4. Oeder, S., Kanashova, T., Sippula, O., et al: ‘Particulate matter from both heavy fuel oil and diesel fuel shipping emissions show strong biological effects on human lung cells at realistic and comparable in vitro exposure conditions’, PloS One, 2015, 10, (6), p. e0126536.
    34. 34)
      • 8. Gysel, N.R., Russell, R.L., Welch, W.A., et al: ‘Impact of sugarcane renewable fuel on in-use gaseous and particulate matter emissions from a marine vessel’, Energy Fuels, 2014, 28, (6), pp. 41774182.
    35. 35)
      • 28. Bidleman, T.F.: ‘Atmospheric processes wet and dry deposition of organic compounds are controlled by their vapor – particle partitioning’, Environ. Sci. Technol., 1988, 22, (4), pp. 361367.
    36. 36)
      • 33. Yunker, M.B., Macdonald, R.W., Vingarzan, R., et al: ‘Pahs in the Fraser river basin: a critical appraisal of Pah ratios as indicators of Pah source and composition’, Org. Geochem., 2002, 33, (4), pp. 489515.
    37. 37)
      • 21. Anderson, M., Salo, K., Hallquist, Å.M., et al: ‘Characterization of particles from a marine engine operating at low loads’, Atmos. Environ., 2015, 101, pp. 6571.
    38. 38)
      • 17. Geng, P., Mao, H., Zhang, Y., et al: ‘Combustion characteristics and NOx emissions of a waste cooking oil biodiesel blend in a marine auxiliary diesel engine’, Appl. Therm. Eng., 2017, 115, pp. 947954.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.5266
Loading

Related content

content/journals/10.1049/iet-its.2018.5266
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading