Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Complex network model for railway timetable stability optimisation

Recent studies on train timetable are paying more and more attention to the dynamic characteristics. Among the dynamic characteristics, stability is a most important one, which determines the capacity of the train timetable to tolerate the disturbance in the train operation process. In this study, the authors build a complex network model to describe the train timetable, making it possible to utilise the complex network theory to study the train timetable optimisation problem. Then, they design the solving algorithm to solve the problem. Finally, they present a computing case to prove the approach to improve the train timetable stability is practical. The approach proposed in this study can generate referential advice for the railway operators design the train timetable.

References

    1. 1)
      • 6. Lee, T.H., Park, J.H., Xu, S.: ‘Relaxed conditions for stability of time–varying delay systems’, Automatica, 2017, 75, pp. 1115.
    2. 2)
      • 28. Shao, F., Li, K.: ‘A complex network model for analyzing railway accidents based on the maximal information coefficient’, Commun. Theor. Phys., 2016, 66, (4), p. 459.
    3. 3)
      • 17. Liebchen, C., Stille, S.: ‘Delay resistant timetabling’, Public Transp., 2009, 1, (1), pp. 5572.
    4. 4)
      • 1. Goverde, R.M.P., Hansen, I.A.: ‘Performance indicators for railway timetables’. Proc. IEEE Int. Conf. Intelligent Rail Transportation, Beijing, China, August 2013, pp. 301306.
    5. 5)
      • 16. Cicerone, S., Di Stefano, G., Schachtebeck, M., et al: ‘Multi–stage recovery robustness for optimization problems, a new concept for planning under disturbances’, Inf. Sci., 2012, 190, pp. 107126.
    6. 6)
      • 31. Lee, Y., Lu, L.S., Wu, M.L., et al: ‘Balance of efficiency and robustness in passenger railway timetables’, Transp. Res. B, Methodol., 2017, 97, pp. 142156.
    7. 7)
      • 25. Corman, F., Quaglietta, E., Goverde, R.M.P.: ‘Automated real-time railway traffic control: an experimental analysis of reliability, resilience and robustness’, Transp. Plan. Technol., 2018, 41, (4), pp. 21447.
    8. 8)
      • 14. Engelhardt–Funke, O., Kolonko, M.: ‘Analysing stability and investments in railway networks using advanced evolutionary algorithm’, Int. Trans. Oper., 2004, 11, (4), pp. 381394.
    9. 9)
      • 22. Zhao, M.: ‘Railway network evaluation based on complex network analysis’, Adv. Appl. Math., 2016, 5, (3), pp. 560566.
    10. 10)
      • 9. Coviello, N.: ‘Modelling periodic operations on single track lines, timetable design and stability evaluation’, Res. Transp. Econ., 2015, 54, pp. 214.
    11. 11)
      • 10. Xavier, D., Xavier, G., Joaquín, R.: ‘Stability evaluation of a railway timetable at station level’, Eur. J. Oper. Res., 2009, 195, (3), pp. 780790.
    12. 12)
      • 24. Ferreira, L., Higgins, A.: ‘Modeling reliability of train arrival times’, J. Transp. Eng., 1996, 122, (6), pp. 14420.
    13. 13)
      • 27. Valério, D., Lopes, A.M., Machado, J.A.T.: ‘Entropy analysis of a railway network's complexity’, Entropy, 2016, 18, (11), p. 388.
    14. 14)
      • 34. Meng, X., Cui, B., Jia, L., et al: ‘Networked timetable stability improvement based on a bilevel optimization programming model’, Math. Probl. Eng., 2014, pp. 110.
    15. 15)
      • 5. Meng, X., Jia, L.: ‘Train timetable stability evaluation based on analysis of interior and exterior factors information entropy’, Appl. Math. Inf. Sci., 2014, 8, (3), pp. 13191325.
    16. 16)
      • 30. Aken, S.V., Bešinović, N., Goverde, R.M.P.: ‘Designing alternative railway timetables under infrastructure maintenance possessions’, Transp. Res. B, Methodol., 2017, 98, pp. 224238.
    17. 17)
      • 19. Carey, M., Carville, S.: ‘Testing schedule performance and reliability for train stations’, J. Oper. Res. Soc., 2000, 51, (6), pp. 666682.
    18. 18)
      • 4. Schittenhelm, B.: ‘Planning with timetable supplements in railway timetables’. Proc. Annual Transport Conf. at Aalborg University, Aalborg, Denmark, 2011, pp. 118.
    19. 19)
      • 18. D'Angelo, G., Di Stefano, G., Alfredo, N., et al: ‘Recoverable robust timetables, an algorithmic approach on trees’, IEEE Trans. Comput., 2011, 60, (3), pp. 433446.
    20. 20)
      • 11. Goverde, M.P.: ‘Railway timetable stability analysis using max–plus system theory’, Transp. Res. Part B, 2007, 41, (2), pp. 179201.
    21. 21)
      • 29. Francesco, R., Gabriele, M., Stefano, R.: ‘Complex railway systems: capacity and utilisation of interconnected networks’, Eur. Transp. Res. Rev., 2016, 8, (4), p. 29.
    22. 22)
      • 21. Luethi, M., Medeossi, G., Nash, A.: ‘Structure and simulation evaluation of an integrated real-time rescheduling system for railway networks’, Netw. Spat. Econ., 2009, 9, (1), pp. 103121.
    23. 23)
      • 15. Cicerone, S., D'Angelo, G., Di Stefano, G., et al: ‘Recoverable robust timetabling for single delay, complexity and polynomial algorithms for special cases’, J. Comb. Optim., 2009, 18, (3), pp. 229257.
    24. 24)
      • 13. Niu, H., Zhou, X., Gao, R.: ‘Train scheduling for minimizing passenger waiting time with time-dependent demand and skip–stop patterns, nonlinear integer programming models with linear constraints’, Transp. Res. B, 2015, 76, pp. 117135.
    25. 25)
      • 23. Lee, W.H., Yen, L.H., Chou, C.M.: ‘A delay root cause discovery and timetable adjustment model for enhancing the punctuality of railway services’, Transp. Res. C, Emerg. Technol., 2016, 73, pp. 4964.
    26. 26)
      • 12. Hansen, I.A.: ‘Station capacity and stability of train operations’. Proc. 7th Int. Conf. on Computers in Railways, Bologna, Italy, September 2000, pp. 809816.
    27. 27)
      • 32. Burggraeve, S., Vansteenwegen, P.: ‘Optimization of supplements and buffer times in passenger robust timetabling’, J. Rail Transp. Plan. Manage., 2017, 7, (3), pp. 171186.
    28. 28)
      • 33. Meng, X., Jia, L., Qin, Y. ‘Train timetable optimizing and rescheduling based on improved particle swarm algorithm’, Transp. Res. Rec., 2010, 2197, pp. 7179.
    29. 29)
      • 8. Erceg, I., Sumina, D., Tusun, S., et al: ‘Power system stabilizer based on pointwise min–norm control law’, Electr. Power Syst. Res., 2017, 143, pp. 215224.
    30. 30)
      • 35. Meng, X., Jia, L., Xie, J., et al: ‘Complex characteristic analysis of passenger train flow network’. Proc. Chinese Control and Decision Conf., Xuzhou, China, May 2010, pp. 25332536.
    31. 31)
      • 36. Meng, X.: ‘Controllability of train service network’, Math. Probl. Eng., 2015, pp. 18.
    32. 32)
      • 7. Asad, H.S., Yuen, R.K.K., Huang, G.: ‘Multiplexed real–time optimization of HVAC systems with enhanced control stability’, Appl. Energy, 2017, 187, pp. 640651.
    33. 33)
      • 2. Andersson, E., Peterson, A., Törnquist Krasemann, J.: ‘Introducing a new quantitative measure of railway timetable robustness based on critical points’. Proc. 5th Int. Conf. on Railway Operations Modelling and Analysis, Copenhagen, Denmark, January 2013, pp. 119.
    34. 34)
      • 20. Vromans, M.J.C.M., Dekker, R., Kroon, L.G.: ‘Reliability and heterogeneity of railway services’, Eur. J. Oper. Res., 2006, 172, pp. 647665.
    35. 35)
      • 3. Cacchiani, V., Toth, P.: ‘Nominal and robust train timetabling problems’, Eur. J. Oper. Res., 2012, 219, (3), pp. 727737.
    36. 36)
      • 26. Feng, J., Li, X., Mao, B., et al: ‘Weighted complex network analysis of the Beijing subway system: train and passenger flows’, Physica A, 2017, 474, pp. 213223.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.5257
Loading

Related content

content/journals/10.1049/iet-its.2018.5257
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address