Understanding drivers' route choice behaviours in the urban network with machine learning models

Understanding drivers' route choice behaviours in the urban network with machine learning models

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Drivers' route choice model is essential in transportation software such as navigation, fleet management, and simulation, where the random utility models (RUM) have dominated for years. The authors investigate here whether machine learning (ML) models could be applied into this field, and whether these approaches outperform the traditional models in goodness-of-fit and prediction. The application framework and data structure are proposed, where the challenging problems lie in: (i) to pool data from multiple origin–destination pairs; and (ii) to interpret results for behaviour analysis. All RUM and ML models are applied in a real network. Results suggest that the random forest, one of the ML models, has satisfying performances with acceptable computation time, making it suitable for large network and real-time analysis. This study shows that the ML models can be adopted for behaviour analysis, such as to prioritise the importance of variables, compute the elasticity, and forecast for scenarios. Future directions on combining the RUM and ML models are discussed.

Related content

This is a required field
Please enter a valid email address