Arterial link travel time estimation considering traffic signal delays using cellular handoff data

Arterial link travel time estimation considering traffic signal delays using cellular handoff data

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Link travel time is an important evaluation index of urban arterial traffic condition. It is traditionally estimated from loop detector data and GPS probe vehicle data. The former suffers from the coverage and maintenance issues. The latter has issues related to low penetration rate. Cellphone handoff data is one alternative that may address those deficiencies with its large coverage areas and continuous detection capabilities at low cost. Existing cellular probe vehicle based travel time estimation methods are primarily designed for freeway. Limited studies have been conducted for signalised arterials. Cellular handoff data detects the time lapse between two consecutive wireless handoff points. When vehicles with on-call cellphones traverse between two handoff points, their space mean speeds can be calculated by dividing the pre-calibrated distances by the time lapses. In this study, a new cellular handoff data based arterial travel time estimation model is proposed and compared with existing models. A hybrid traffic-and-wireless simulation network is built to simulate the handoff data generation and processing. Field data are collected at an arterial corridor in Chengdu, China to establish the baseline condition. The results from the proposed model show promising performance with detection errors of link travel times mostly within 10%.


    1. 1)
      • 1. Kwon, J., Petty, K.: ‘Travel time prediction algorithm scalable to freeway networks with many nodes with arbitrary travel routes’, Transp. Res. Rec., J. Transp. Res. Board, 2005, 1935, pp. 147153.
    2. 2)
      • 2. Liu, H., Danczyk, A., Brewer, R., et al: ‘Evaluation of cell phone traffic data in Minnesota’, Transp. Res. Rec., J. Transp. Res. Board, 2008, 2086, pp. 17.
    3. 3)
      • 3. Ma, D., Luo, X., Li, W., et al: ‘Traffic demand estimation for lane groups at signal-controlled intersections using travel times from video-imaging detectors’, IET Intell. Transp. Syst., 2017, 11, (4), pp. 222229.
    4. 4)
      • 4. Van Lint, J.W.C., Hoogendoorn, S.P., Van Zuylen, H.J., et al: ‘Accurate freeway travel time prediction with state-space neural networks under missing data’, Transp. Res. C, Emerg. Technol., 2005, 13, (5), pp. 347369.
    5. 5)
      • 5. Tang, J., Zhang, S., Chen, X., et al: ‘Taxi trips distribution modeling based on entropy-maximizing theory: a case study in Harbin city-China’, Phys. A, Stat. Mech. Appl., 2018, 493, pp. 430443.
    6. 6)
      • 6. Tang, J., Liang, J., Zhang, S., et al: ‘Inferring driving trajectories based on probabilistic model from large scale taxi GPS data’, Phys. A, Stat. Mech. Appl., 2018, 506, pp. 566577.
    7. 7)
      • 7. Li, H., Li, X., Xu, X., et al: ‘Modeling departure time choice of metro passengers with a smart corrected mixed logit model – a case study in Beijing’, Transp. Policy, 2018, 69, pp. 106121.
    8. 8)
      • 8. Xu, X., Liu, J., Li, H., et al: ‘Capacity-oriented passenger flow control under uncertain demand: algorithm development and real-world case study’, Transp. Res. E, Logist. Transp. Rev., 2016, 87, pp. 130148.
    9. 9)
      • 9. Wu, Y., Tan, H., Qin, L., et al: ‘A hybrid deep learning based traffic flow prediction method and its understanding’, Transp. Res. C, Emerg. Technol., 2018, 90, pp. 166180.
    10. 10)
      • 10. Ni, L., Wang, X.C., Chen, X.M.: ‘A spatial econometric model for travel flow analysis and real-world applications with massive mobile phone data’, Transp. Res. C, Emerg. Technol., 2018, 86, pp. 510526.
    11. 11)
      • 11. Gong, Q., Adams, T.M., Wang, X.B., et al: ‘Estimating link travel time with sparse GPS data on highway corridors. transportation research record’, J. Transp. Res. Board, 2015, 2477, pp. 717.
    12. 12)
      • 12. Neumann, T.: ‘Accuracy of distance-based travel time decomposition in probe vehicle systems’, J. Adv. Transp., 2014, 48, (8), pp. 10871106.
    13. 13)
      • 13. Lu, L., Wang, J., He, Z., et al: ‘Real-time estimation of freeway travel time with recurrent congestion based on sparse detector data’, IET Intell. Transp. Syst., 2017, 12, (1), pp. 211.
    14. 14)
      • 14. Yang, Z., Gong, B., Lin, C.: ‘Travel time estimate based on floating Car’. Second Int. Conf. on Intelligent Computation Technology and Automation, ICICTA09, Zhangjiajie, China, 2009, pp. 868871.
    15. 15)
      • 15. Bhaskar, A., Chung, E., Dumont, A.G.: ‘Travel time estimation on urban networks with Mid-link sources and sinks’, Transp. Res. Rec., 2008, 2121, pp. 4154.
    16. 16)
      • 16. Zhu, L., Guo, F., Polak, J., et al: ‘Urban link travel time estimation using traffic states based data fusion’, IET Intell. Transp. Syst., 2018, 12, (7), pp. 651663.
    17. 17)
      • 17. Jula, H., Dessouky, M., Ioannou, P.: ‘Real-time estimation of travel times along the arcs and arrival times at the nodes of dynamic stochastic networks’, IEEE Trans. Intell. Transp. Syst., 2008, 9, (1), pp. 97110.
    18. 18)
      • 18. Pirc, J., Turk, G., Žura, M.: ‘Highway travel time estimation using multiple data sources’, IET Intell. Transp. Syst., 2016, 10, (10), pp. 649657.
    19. 19)
      • 19. Liu, H.X., Ma, W.: ‘A virtual vehicle probe model for time-dependent travel time estimation on signalized arterials’, Transp. Res. C, Emerg. Technol., 2009, 17, (1), pp. 1126.
    20. 20)
      • 20. Jang, J.: ‘Outlier filtering algorithm for travel time estimation using dedicated short-range communications probes on rural highways’, IET Intell. Transp. Syst., 2016, 10, (6), pp. 453460.
    21. 21)
      • 21. Derrmann, T., Frank, R., Faye, S., et al: ‘Towards privacy-neutral travel time estimation from mobile phone signalling data’. IEEE International Smart Cities Conf. (ISC2), Wuxi, China, 2016, pp. 16.
    22. 22)
      • 22. Chen, M., Yu, G., Chen, P., et al: ‘A copula-based approach for estimating the travel time reliability of urban arterial’, Transp. Res. C, Emerg. Technol., 2017, 82, pp. 123.
    23. 23)
      • 23. Ma, Z., Koutsopoulos, H.N., Ferreira, L., et al: ‘Estimation of trip travel time distribution using a generalized Markov chain approach’, Transp. Res. C, Emerg. Technol., 2017, 74, pp. 121.
    24. 24)
      • 24. Hunter, T., Herring, R., Abbeel, P., et al: ‘Path and travel time inference from GPS probe vehicle data’, NIPS Anal. Netw. Learn. Graphs, 2009, 12, p. 1.
    25. 25)
      • 25. Zheng, F., Zuylen, H.V.: ‘Urban link travel time estimation based on sparse probe vehicle data’, Transp. Res. C, Emerg. Technol., 2013, 31, (2), pp. 145157.
    26. 26)
      • 26. Hellinga, B., Izadpanah, P., Takada, H., et al: ‘Decomposing travel times measured by probe-based traffic monitoring systems to individual road segments’, Transp. Res. C, Emerg. Technol., 2008, 16, (6), pp. 768782.
    27. 27)
      • 27. Tang, J, Liu, F, Zhang, W, et al: ‘Lane-changes prediction based on adaptive fuzzy neural network’, Expert Syst. Appl., 2018, 91, pp. 452463.
    28. 28)
      • 28. Wu, Y., Tan, H., Qin, L., et al: ‘A hybrid deep learning based traffic flow prediction method and its understanding’, Transp. Res. C, Emerg. Technol., 2018, 90, pp. 166180.
    29. 29)
      • 29. Skabardonis, A., Geroliminis, N.: ‘Real-time estimation of travel times on signalized arterials(R)’, No. LUTS-ARTICLE-2009-003, 2005, pp. 387406.
    30. 30)
      • 30. Smith, B.L., Zhang, H., Fontaine, M.D., et al: ‘Wireless location technology-based traffic monitoring: critical assessment and evaluation of an early-generation system’, J. Transp. Eng., 2004, 130, (5), pp. 576584.
    31. 31)
      • 31. Bisdikian, C.: ‘Enabling location-based services through passive monitoring techniques: mobile positioning with the HINTON locator probe’. A White Paper from Telesoft Technologies, 1st Workshop on Mobile Commerce, 2001.
    32. 32)
      • 32. Bachman, W.: ‘AirSage traffic data quality’. Final Report, GeoStats, Atlanta, GA, Rome, Italy, 2009.
    33. 33)
      • 33. Herrera, J.C., Work, D.B., Herring, R., et al: ‘Evaluation of traffic data obtained via GPS-enabled mobile phones: the mobile century field experiment’, Transp. Res. C, Emerg. Technol., 2010, 18, (4), pp. 568583.
    34. 34)
      • 34. Smith, B., Fontaine, M., Beaton, J., et al: ‘NCHRP 70–01: private-sector provision of congestion data’. Final Report, 2007.
    35. 35)
      • 35. Yang, F., Cheng, Y., Jin, J., et al: ‘Wireless communication simulation model for traffic monitoring systems based on dynamic cellular handoffs: framework and evaluation’, Transp. Res. Rec., J. Transp. Res. Board, 2012, 2291, pp. 2634.
    36. 36)
      • 36. Janecek, A., Hummel, K.A., Valerio, D., et al: ‘Cellular data meet vehicular traffic theory: location area updates and cell transitions for travel time estimation’. ACM Conf. on Ubiquitous Computing, 2012, pp. 361370.
    37. 37)
      • 37. Kirk, B., Fagan, K., Renner, R.: ‘Development and demonstration of a system for using cell phones as traffic probes’. Research Reports, Pittsburgh, USA, 2005.
    38. 38)
      • 38. Bar-Gera, H.: ‘Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times: a case study from Israel’, Transp. Res. C, Emerg. Technol., 2007, 15, (6), pp. 380391.
    39. 39)
      • 39. Yang, F., Yao, Z., Jin, P.J., et al: ‘Performance evaluation of handoff-based cellular traffic monitoring systems using combined wireless and traffic simulation platform’, J. Intell. Transp. Syst. Technol. Plan. Oper., 2016, 20, (2), pp. 113124.
    40. 40)
      • 40. Olszewski, P.: ‘Overall delay, stopped delay, and stops at signalized intersections’, J. Transp. Eng., 1993, 119, (6), pp. 835852.
    41. 41)
      • 41. Manual H C. HCM2010: Transportation Research Board, (National Research Council, Washington, DC, 2010).
    42. 42)
      • 42. Institute of Electrical and Electronics Engineers: ‘IEEE Std 802.16-2009. IEEE standard for local and metropolitan area networks—Part 16: Air interface for broadband wireless access systems’. Retrieved from, 2009. Available at

Related content

This is a required field
Please enter a valid email address