http://iet.metastore.ingenta.com
1887

Active collision algorithm for autonomous electric vehicles at intersections

Active collision algorithm for autonomous electric vehicles at intersections

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Various studies have been conducted on resisting network attacks on autonomous vehicles and vehicular networks. Invaded vehicles may cause severe damage and casualties; thus, it is essential to stop these vehicles to prevent traffic accidents and terrorist attacks. To improve traffic safety, an active collision algorithm based on trajectory planning is therefore proposed. The algorithm can be used to cause autonomous vehicles to collide with invaded vehicles at intersections. Several types of trajectory planning algorithms have been proposed for autonomous vehicles in recent years. However, a few of these algorithms consider active collisions with other vehicles. The main advantage and novelty of the proposed method are that it can be utilised to plan a suitable trajectory for active collision with invaded vehicles at intersections. This capability has rarely been discussed in the literature to date. The main contributions of this study are that the problem of active collision of autonomous vehicles at intersections is discussed and an effective active collision algorithm based on trajectory planning is proposed. The performance of the algorithm is demonstrated using simulation. The results show that the proposed algorithm is effective in enabling autonomous electric vehicles to collide with invaded vehicles at intersections.

References

    1. 1)
      • 1. Guo, J., Hu, P., Wang, R.: ‘Nonlinear coordinated steering and braking control of vision-based autonomous vehicles in emergency obstacle avoidance’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (4), pp. 10151028.
    2. 2)
      • 2. Guo, J., Luo, Y., Li, K., et al: ‘Coordinated path-following and direct yaw-moment control of autonomous electric vehicles with sideslip angle estimation’, Mech. Syst. Signal Process., 2018, 105, pp. 183199.
    3. 3)
      • 3. Guo, J., Luo, Y., Li, K.: ‘Dynamic coordinated control for over-actuated autonomous electric vehicles with nonholonomic constraints via nonsingular terminal sliding mode technique’, Nonlinear Dyn., 2016, 85, (1), pp. 583597.
    4. 4)
      • 4. Guo, J., Luo, Y., Li, K., et al: ‘An adaptive hierarchical trajectory following control approach of autonomous four-wheel independent drive electric vehicles’, IEEE Trans. Intell. Transp. Syst., 2018, 19, (8), pp. 24822492.
    5. 5)
      • 5. Guo, J., Luo, Y., Li, K., et al: ‘Adaptive neural-network sliding mode cascade architecture of longitudinal tracking control for unmanned vehicles’, Nonlinear Dyn., 2017, 87, (4), pp. 24972510.
    6. 6)
      • 6. Guo, J., Luo, Y., Li, K., et al: ‘Adaptive nonlinear trajectory tracking control for lane change of autonomous four wheel independently drive electric vehicles’, IET Intell. Transp. Syst., 2018, 12, (7), pp. 712720.
    7. 7)
      • 7. Xie, G., Gao, H., Qian, L., et al: ‘Vehicle trajectory prediction by integrating physics-and-maneuver-based approaches using interactive multiple models’, IEEE Trans. Ind. Electron., 2018, 65, (7), pp. 59996008.
    8. 8)
      • 8. Gao, H., Zhang, X., Liu, Y., et al: ‘Longitudinal control for Mengshi autonomous vehicle via gauss cloud model’, IOP Conf. Ser., Mater. Sci. Eng., 2018, 320, (1), p. 012018.
    9. 9)
      • 9. Zhang, X., Gao, H., Li, G., et al: ‘Multi-view clustering based on graph-regularized nonnegative matrix factorization for object recognition’, Inf. Sci., 2018, 432, pp. 463478.
    10. 10)
      • 10. Gao, H., Zhang, X., Zhang, T., et al: ‘Research of intelligent vehicle variable granularity evaluation based on cloud model’, Acta Electron. Sin., 2016, 44, (2), pp. 365373.
    11. 11)
      • 11. Gao, H., Zhang, X., An, L., et al: ‘Relay navigation strategy study on intelligent drive on urban roads’, J. China Univ. Posts Telecommun., 2016, 23, (2), pp. 7990.
    12. 12)
      • 12. Sumra, I.A., Binhasbullah, H.B., Manan, J.A., et al: ‘Classification of attacks in vehicular Ad hoc network (VANET)’, Inf. Jpn., 2013, 16, (5), pp. 29953004.
    13. 13)
      • 13. Vijayakumar, P., Azees, M., Kannan, A., et al: ‘Dual authentication and key management techniques for secure data transmission in vehicular ad hoc networks’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (4), pp. 10151028.
    14. 14)
      • 14. Purohit, K.C., Dimri, S.C., Jasola, S.: ‘Mitigation and performance analysis of routing protocols under black-hole attack in vehicular ad-hoc network (VANET)’, Wirel. Pers. Commun., 2017, 97, (4), pp. 50995114.
    15. 15)
      • 15. Horng, S.J., Tzeng, S.F., Li, T., et al: ‘Enhancing security and privacy for identity-based batch verification scheme in VANET’, IEEE Trans. Veh. Technol., 2017, 66, (4), pp. 32353248.
    16. 16)
      • 16. Mehdi, M.M., Raza, I., Hussain, S.A.: ‘A game theory based trust model for vehicular Ad hoc networks (VANETs)’, Comput. Netw., 2017, 121, pp. 152172.
    17. 17)
      • 17. Zhu, X., Xu, F., Novak, E., et al: ‘Using wireless link dynamics to extract a secret key in vehicular scenarios’, IEEE Trans. Mob. Comput., 2017, 16, (7), pp. 20652078.
    18. 18)
      • 18. Saxena, N., Grijalva, S., Chukwuka, V., et al: ‘Network security and privacy challenges in smart vehicle-to-grid’, IEEE Wirel. Commun., 2017, 24, (4), pp. 8898.
    19. 19)
      • 19. Nkenyereye, L., Kwon, J., Choi, Y.H.: ‘Secure and lightweight cloud-assisted video reporting protocol over 5G-enabled vehicular networks’, Sensors, 2017, 17, (10), pp. 117.
    20. 20)
      • 20. Ying, B., Nayak, A.: ‘Anonymous and lightweight authentication for secure vehicular networks’, IEEE Trans. Veh. Technol., 2017, 66, (12), pp. 1062610636.
    21. 21)
      • 21. Upadhyay, S., Ratnoo, A.: ‘A point-to-ray framework for generating smooth parallel parking maneuvers’, IEEE Robot. Autom. Mag., 2018, 3, (2), pp. 12681275.
    22. 22)
      • 22. Wnag, C., Zhao, W., Xu, Z., et al: ‘Path planning and stability control of collision avoidance system based on active front steering’, Sci. China Technol. Sci., 2017, 60, (8), pp. 12311243.
    23. 23)
      • 23. Elbanhawi, W., Simic, M., Jazar, R.: ‘Improved manoeuvring of autonomous passenger vehicles: simulations and field results’, J. Vib. Control, 2017, 23, (12), pp. 19541983.
    24. 24)
      • 24. Wang, J., Zhang, Q., Zhang, Z., et al: ‘Structured trajectory planning of collision-free lane change using the vehicle–driver integration data’, Sci. China Technol. Sci., 2016, 59, (5), pp. 825831.
    25. 25)
      • 25. Alia, C., Gilles, T., Reine, T., et al: ‘Local trajectory planning and tracking of autonomous vehicles, using clothoid tentacles method’. IEEE Intelligent Vehicle Symp., Seoul, South Korea, June–July 2015, pp. 674679.
    26. 26)
      • 26. Kim, G., Lee, D., Kim, B.: ‘Path planning for avoiding obstacles for unmanned ground vehicles’. Int. Scientific Conf. on Future Information Technology, Hanoi, Vietnam, May 2015, pp. 211217.
    27. 27)
      • 27. Wang, L., Zhao, X., Su, H., et al: ‘Lane changing trajectory planning and tracking control for intelligent vehicle on curved road’, SpringerPlus, 2016, 5, p. 1150.
    28. 28)
      • 28. Kiss, D., Tevesz, G.: ‘Autonomous path planning for road vehicles in narrow environments an efficient continuous curvature approach’, J. Adv. Transp., 2017, 2017, (2), pp. 127.
    29. 29)
      • 29. Tu, Q., Chen, H., Li, J.: ‘A potential field based lateral planning method for autonomous vehicles’, SAE Int. J. Passenger Cars-Electron. Electr. Syst., 2017, 10, (1), pp. 2434.
    30. 30)
      • 30. Rasekhipour, Y., Khajepour, A., Chen, S., et al: ‘A potential field-based model predictive path-planning controller for autonomous road vehicles’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (5), pp. 12551267.
    31. 31)
      • 31. Moreau, J., Melchior, P., Victor, S., et al: ‘Path planning with fractional potential fields for autonomous vehicles’. World Congress of the Int. Federation of Automatic Control, Toulouse, France, July 2017, pp. 1453314538.
    32. 32)
      • 32. Cao, H., Song, X., Huang, Z., et al: ‘Simulation research on emergency path planning of an active collision avoidance system combined with longitudinal control for an autonomous vehicle’, Proc. Inst. Mech. Eng. D, J. Automob. Eng., 2016, 230, (12), pp. 16241653.
    33. 33)
      • 33. Calceran, E., Eustice, R.M., Olson, E.: ‘Toward integrated motion planning and control using potential fields and torque-based steering actuation for autonomous driving’. IEEE Intelligent Vehicles Symp., Seoul, South Korea, June–July 2017, pp. 304309.
    34. 34)
      • 34. Jafari, R., Zeng, S., Moshchuk, N., et al: ‘Reactive path planning for emergency steering maneuvers on highway roads’. American Control Conf., Seattle, USA, May 2017, pp. 29432949.
    35. 35)
      • 35. Hegedus, F., Becsi, T., Aradi, S., et al: ‘Model based trajectory planning for highly automated road vehicles’. World Congress of the Int. Federation of Automatic Control, Toulouse, France, July 2017, pp. 69586964.
    36. 36)
      • 36. Li, A., Zhao, W., Li, S., et al: ‘Research on the motion trajectory optimization method based on the improved genetic algorithm for an intelligent vehicle’, Proc. Inst. Mech. Eng. D, J. Automob. Eng., 2016, 230, (13), pp. 17291740.
    37. 37)
      • 37. Fu, X., Jiang, Y., Huang, D., et al: ‘Intelligent computing budget allocation for on-road trajectory planning based on candidate curves’, Front. Inf. Technol. Electron. Eng., 2016, 17, (6), pp. 553565.
    38. 38)
      • 38. Zambom, A., Collazos, J., Dias, R.: ‘Constrained optimization with stochastic feasibility regions applied to vehicle path planning’, J. Glob. Optim., 2016, 64, (4), pp. 803823.
    39. 39)
      • 39. Fu, X., Jiang, Y., Huang, D., et al: ‘Trajectory planning for automated driving based on ordinal optimization’, Tsinghua Sci. Technol., 2017, 22, (1), pp. 6272.
    40. 40)
      • 40. Li, X., Sun, Z., Cao, D., et al: ‘Real-time trajectory planning for autonomous urban driving: framework, algorithms, and verifications’, IEEE/ASME Trans. Mechatron., 2016, 21, (2), pp. 740753.
    41. 41)
      • 41. Mouhcine, E., Mansouri, K., Mohamed, Y: ‘An improved swarm optimization algorithm for vehicle path planning problem’. IEEE Int. Colloquium on Information Science and Technology, Tangier, Morocco, October 2016, pp. 707712.
    42. 42)
      • 42. Du, X., Li, H., Liu, D., et al: ‘Path planning for autonomous vehicles in complicated environments’. IEEE Int. Conf. on Vehicular Electronics and Safety, Beijing China, July 2016, pp. 5460.
    43. 43)
      • 43. Perumal, D., Srinivasan, S., Subathra, B., et al: ‘MILP based autonomous vehicle path-planning controller for unknown environments with dynamic obstacles’, Int. J. Heavy Veh. Syst., 2016, 23, (4), pp. 350369.
    44. 44)
      • 44. Cai, L., Jia, J.: ‘Path planning with PSO for autonomous vehicle’. Int. Conf. on Machinery, Materials Science and Engineering Applications, Wuhan, China, June 2015, pp. 263266.
    45. 45)
      • 45. Lim, W., Lee, S., Surwoo, M., et al: ‘Hierarchical trajectory planning of an autonomous car based on the integration of a sampling and an optimization method’, IEEE Trans. Intell. Transp. Syst., 2018, 2, (19), pp. 613626.
    46. 46)
      • 46. Hu, X., Chen, L., Tang, B., et al: ‘Dynamic path planning for autonomous driving on various roads with avoidance of static and moving obstacles’, Mech. Syst. Signal Process., 2018, 100, pp. 482500.
    47. 47)
      • 47. Li, X., Sun, Z., Cao, D., et al: ‘Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles’, Mech. Syst. Signal Process., 2017, 87, pp. 118137.
    48. 48)
      • 48. Lee, S., Gonzalez, R., Lagnemma, K.: ‘Robust sampling-based motion planning for autonomous tracked vehicles in deformable high slip terrain’. IEEE Int. Conf. on Robotics and Automation, Stockholm, Sweden, May 2016, pp. 25692574.
    49. 49)
      • 49. Mehta, S., Ton, C., McCourt, M., et al: ‘Human-assisted RRT for path planning in urban environments’. IEEE Int. Conf. on Systems Man and Cybernetics, Hong Kong, China, October 2015, pp. 941946.
    50. 50)
      • 50. Al Najada, H., Mahgoub, I.: ‘Autonomous vehicles safe-optimal trajectory selection based on big data analysis and predefined user preferences’. IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conf., New York, USA, October 2016, pp. 740753.
    51. 51)
      • 51. Shi, C., Lan, X., Wang, Y.: ‘Motion planning for unmanned vehicle based on hybrid deep learning’, Int. Conf. on Security, Pattern Analysis, and Cybernetics, Shenzhen, China, December 2017, pp. 473478.
    52. 52)
      • 52. Qi, X., Theilliol, D., Song, D., et al: ‘Invariant-set-based planning approach for obstacle avoidance under vehicle dynamic constraints’. IEEE Int. Conf. on Robotics and Biomimetics, Zhuhai, China, December 2015, pp. 16921697.
    53. 53)
      • 53. Cirillo, M.: ‘From videogames to autonomous trucks: a new algorithm for lattice-based motion planning’. IEEE Int. Vehicles Symp., Redondo Beach, Canada, June 2017, pp. 148153.
    54. 54)
      • 54. Ulbrich, F., Goehring, D., Langner, T., et al: ‘Stable timed elastic bands with loose ends’. IEEE Int. Vehicles Symp., Redondo Beach, Canada, June 2017, pp. 186192.
    55. 55)
      • 55. Ferreau, H., Kirches, C., Potschka, A., et al: ‘qpOASES: a parametric active-set algorithm for quadratic programming’, Math. Program. Comput., 2014, 4, (6), pp. 327363.
    56. 56)
      • 56. Bian, C., Yin, G., Hu, M., et al: ‘Fault tolerant control design for all wheels independent drive and steering electric vehicle with singular effective drive wheel’. IEEE Vehicle Power and Propulsion Conf., Hangzhou, China, October 2016, pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.5178
Loading

Related content

content/journals/10.1049/iet-its.2018.5178
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address