Real-time detection of end-of-queue shockwaves on freeways using probe vehicles with spacing equipment

Real-time detection of end-of-queue shockwaves on freeways using probe vehicles with spacing equipment

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The identification of a traffic shockwave traditionally is conducted offline, which inhibits its implementation for active traffic management strategies. This study aims to develop an online approach to detect traffic shockwaves on freeways, particularly the end-of-queue shockwaves, using spacing-based probe vehicles (SPVs) that can obtain the trajectories of its leading and/or following vehicles. The proposed framework consists of four stages: (i) local shockwave (LSW) position detection, (ii) LSW speed estimation, (iii) grouping of LSWs into a whole shockwave (WSW) and (iv) WSW speed estimation. In particular, two alternatives, namely the line connection-based method and the Lighthill–Whitham–Richards model-based method (LWRM), are proposed for stage 2, and other two alternatives, namely the simple averaging method and the hybrid method (HM), are proposed for stage 4. A set of next generation simulation data are utilised to evaluate the performance of the proposed method. The results demonstrate that the combination of LWRM + HM outperforms among the four combined methods. A series of the analysis indicate that the proposed method is computationally efficient, accurate and more importantly, it is applicable to sensor data from SPVs with real-world noise.


    1. 1)
      • 1. May, A.D.: ‘Traffic flow fundamentals’ (Prentice-Hall, Inc., NJ, 1990).
    2. 2)
      • 2. Li, Z., Xu, C.C., Li, D., et al: ‘Comparing the effects of ramp metering and variable speed limit on reducing travel time and crash risk at bottlenecks’, IET Intell. Transp. Syst., 2018, 12, (2), pp. 120126.
    3. 3)
      • 3. Lu, X.Y., Varaiya, P., Horowitz, R., et al: ‘Novel freeway traffic control with the variable speed limit and coordinated ramp metering’, Transp. Res. Rec., J. Transp. Res. Board, 2010, 2229, pp. 5565.
    4. 4)
      • 4. Behl, M., Mangharam, R.: ‘Pacer cars: real-time traffic shockwave suppression’. IEEE Real-Time Systems Symp., San Diego, USA, 2010.
    5. 5)
      • 5. Wu, H.P., Shen, W.H., Wei, Y.L., et al: ‘Traffic shockwave mitigation with human-driven vehicles: is it feasible?’. Proc. First ACM Int. Workshop on Smart, Autonomous, and Connected Vehicular Systems and Services, New York, USA, 2016, pp. 3843.
    6. 6)
      • 6. Naujoks, F., Grattenthaler, H., Neukum, A., et al: ‘Effectiveness of advisory warnings based on cooperative perception’. ITS European Congress, 2015, vol. 9, pp. 606617.
    7. 7)
      • 7. Chen, P., Tong, R., Lu, G., et al: ‘The α-reliable path problem in stochastic road networks with link correlations: a moment-matching-based path finding algorithm’, Expert Syst. Appl., 2018, 110, pp. 2032.
    8. 8)
      • 8. Cao, P., Hu, Y., Miwa, T., et al: ‘An optimal mandatory lane change decision model for autonomous vehicles in urban arterials’, J. Intell. Transp. Syst., 2017, 21, (4), pp. 271284.
    9. 9)
      • 9. Hegyi, A., Schutter, B.D., Hellendoorn, J.: ‘Optimal coordination of variable speed limits to suppress shock waves’, IEEE Trans. Intell. Transp. Syst., 2015, 9, (6), pp. 102112.
    10. 10)
      • 10. Kwon, E., Brannan, D., Shouman, K., et al: ‘Development and field evaluation of variable advisory speed limit system for work zones’, Transp. Res. Rec., J. Transp. Res. Board, 2007, 2015, (2015), pp. 1218.
    11. 11)
      • 11. Yang, D., Chen, Y., Xin, L., et al: ‘Real-time detecting and tracking of traffic shockwaves based on weighted consensus information fusion in distributed video network’, IET Intell. Transp. Syst., 2014, 8, (4), pp. 377387.
    12. 12)
      • 12. Lu, X.Y., Skabardonis, A.: ‘Freeway traffic shockwave analysis: exploring the NGSIM trajectory data’. Transportation Research Board 86th Annual Meeting, Washington, D.C., 2007.
    13. 13)
      • 13. Izadpanah, P.: ‘Automatic traffic shockwave identification using vehicles trajectories’. Proc. 88th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 2009.
    14. 14)
      • 14. Ramezani, M., Geroliminis, N.: ‘Queue profile estimation in congested urban networks with probe data’, Comput.-Aided Civ. Infrastruct. Eng., 2015, 30, (6), pp. 414432.
    15. 15)
      • 15. Cheng, Y., Qin, X., Jin, J., et al: ‘An exploratory shockwave approach to estimating queue length using probe trajectories’, J. Intell. Transp. Syst., 2012, 16, (1), pp. 1223.
    16. 16)
      • 16. Seo, T., Kusakabe, T. ‘Probe vehicle-based traffic state estimation method with spacing information and conservation law’, Transp. Res. C, Emerg. Technol., 2015, 59, (3), pp. 391403.
    17. 17)
      • 17. Seo, T., Kusakabe, T., Asakura, Y.: ‘Estimation of flow and density using probe vehicles with spacing measurement equipment’, Transp. Res. C, Emerg. Technol., 2015, 53, (6), pp. 134150.
    18. 18)
      • 18. Zheng, J., Liu, H.X.: ‘Estimating traffic volumes for signalized intersections using connected vehicle data’, Transp. Res. C, Emerg. Technol., 2017, 79, pp. 347362.
    19. 19)
      • 19. Alexiadis, V., Colyar, J., Halkias, J., et al: ‘The next generation simulation program’, ITE J., 2004, 74, (8), pp. 2226.
    20. 20)
      • 20. Pande, A., Abdel-Aty, M.: ‘Comprehensive analysis of the relationship between real-time traffic surveillance data and rear-end crashes on freeways’, Transp. Res. Rec., J. Transp. Res. Board, 2006, 1953, (1), pp. 3140.
    21. 21)
      • 21. Oh, C., Kim, T.: ‘Estimation of rear-end crash potential using vehicle trajectory data’, Accident Anal. Prev., 2010, 42, (6), pp. 18881893.
    22. 22)
      • 22. Weng, J., Meng, Q.: ‘Rear-end crash potential estimation in the work zone merging areas’, J. Adv. Transp., 2014, 48, (3), pp. 238249.
    23. 23)
      • 23. Hsieh, E.Y., Ullman, G.L., Pesti, G., et al: ‘Effectiveness of end-of-queue warning systems and portable rumble strips on lane closure crashes’, J. Transp. Eng. A, Syst., 2017, 143, (11), 04017053.
    24. 24)
      • 24. Lighthill, M.J., Whitham, G.B.: ‘On kinematic waves. II. A theory of traffic flow on long crowded roads’. Proc. Royal Society of London A: Mathematical, Physical and Engineering Sciences, London, UK, 1955, vol. 229, no. 1178, pp. 317345.
    25. 25)
      • 25. Richards, P.I.: ‘Shock waves on the highway’, Oper. Res., 1956, 4, (1), pp. 4251.
    26. 26)
      • 26. Laval, J.A., Leclercq, L.: ‘A mechanism to describe the formation and propagation of stop-and-go waves in congested freeway traffic’, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., 2010, 368, (1928), pp. 45194541.
    27. 27)
      • 27. Oh, S., Yeo, H.: ‘Impact of stop-and-go waves and lane changes on discharge rate in recovery flow’, Transp. Res. B, Methodol., 2015, 77, pp. 88102.
    28. 28)
      • 28. Coifman, B., Li, L.: ‘A critical evaluation of the next generation simulation (NGSIM) vehicle trajectory dataset’, Transp. Res. B, Methodol., 2017, 105, pp. 362377.
    29. 29)
      • 29. Le Vine, S., Liu, X., Zheng, F., et al: ‘Automated cars: queue discharge at signalized intersections with ‘assured-clear-distance-ahead’ driving strategies’, Transp. Res. C, Emer. Technol., 2016, 62, pp. 3554.
    30. 30)
      • 30., accessed March 2018.
    31. 31)
      • 31. Caris, M., Stanko, S., Johannes, W., et al: ‘Detection and tracking of micro aerial vehicles with millimeter wave radar’. IEEE on Radar Conf., London, UK, 2016, pp. 15531555.
    32. 32)
      • 32. Pauli, M., Göttel, B., Scherr, S., et al: ‘Miniaturized millimeter-wave radar sensor for high-accuracy applications’, IEEE Trans. Microw. Theory Tech., 2017, 65, (5), pp. 17071715.

Related content

This is a required field
Please enter a valid email address