Fast velocity trajectory planning and control algorithm of intelligent 4WD electric vehicle for energy saving using time-based MPC

Fast velocity trajectory planning and control algorithm of intelligent 4WD electric vehicle for energy saving using time-based MPC

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

For intelligent four-wheel-drive (4WD) electric vehicle (EV), the vehicle speed can be planned and controlled for energy saving based on the slope information of road ahead. To reduce the calculation load of the optimisation algorithm, the model predictive control (MPC) method is formulated based on the time horizon in this study. Furthermore, a fast gradient method based control tool-GARMPC is used to solve the optimisation problem. First, the longitudinal dynamics model of 4WD EV based on time horizon and distance horizon is established based on the road slope information, respectively. Second, the MPC problem based on the time-discrete model is formulated and solved by GARMPC tool. For comparison, a dynamic program (DP) control method is introduced based on the distance-discrete model. Finally, the simulation is conducted under a designed road condition and a real measured road condition. The results show that the time-horizon based MPC method can significantly reduce the energy consumption compared with the proportion integration differentiation control method, which is similar to the driver's operation. Compared with the DP optimisation method, the time-based MPC method reduces the calculation time to smaller than 1 ms, which is essential for real-time application in a road vehicle.


    1. 1)
      • 1. Wu, D., Ding, H., Du, C.: ‘Dynamics characteristics analysis and control of FWID EV’, Int. J. Autom. Technol., 2018, 19, (1), pp. 135146.
    2. 2)
      • 2. Pettersson, I., Karlsson, I.C.M.: ‘Setting the stage for autonomous cars: a pilot study of future autonomous driving experiences’, IET Intell. Transp. Syst., 2015, 9, (7), pp. 694701.
    3. 3)
      • 3. Tang, X., Yang, W., Hu, X., et al: ‘A novel simplified model for torsional vibration analysis of a series-parallel hybrid electric vehicle’, Mech. Syst. Signal Process., 2017, 85, (2017), pp. 329338.
    4. 4)
      • 4. Tang, X., Hu, X., Yang, W., et al: ‘Novel torsional vibration modeling and assessment of a power-split hybrid electric vehicle equipped with a dual mass flywheel’, IEEE Trans. Veh. Technol., 2018, 67, (3), pp. 19902000.
    5. 5)
      • 5. Engelbrecht, J., Booysen, M.J., Van Rooyen, G.J., et al: ‘Survey of smartphone-based sensing in vehicles for intelligent transportation system applications’, IET Intell. Transp. Syst., 2015, 9, (10), pp. 924935.
    6. 6)
      • 6. Baskar, L.D., De Schutter, B., Hellendoorn, J., et al: ‘Traffic control and intelligent vehicle highway systems: a survey’, IET Intell. Transp. Syst., 2011, 5, (1), pp. 3852.
    7. 7)
      • 7. Ziebinski, A., Cupek, R., Erdogan, H., et al: ‘A survey of ADAS technologies for the future perspective of sensor fusion’, in Nguyen, N.T., et al (Ed.): ‘Computational collective intelligence’ (Springer International Press, Switzerland, 2016, 1st edn.), pp. 135146.
    8. 8)
      • 8. Gu, J.: ‘Vehicle control of four-wheel drive micro electric vehicle’, PhD thesis, Tsinghua University, 2012.
    9. 9)
      • 9. Glaser, S, Orfila, O, Nouveliere, L, et al: ‘Smart and green ACC, adaptation of the ACC strategy for electric vehicle with regenerative capacity’. Proc. IEEE Intelligent Vehicles Symp., Gold Coast Australia, June 2013, pp. 970975.
    10. 10)
      • 10. Lattemann, F., Neiss, K., Terwen, S., et al: ‘The predictive cruise control – a system to reduce fuel consumption of heavy duty trucks’. Proc. SAE World Congress & Exhibition, Detroit, the United States, April 2004, pp. 200401–2002616.
    11. 11)
      • 11. Park, S., Rakha, H., Ahn, K., et al: ‘Predictive eco-cruise control: algorithm and potential benefits’. Proc. IEEE Forum on Integrated and Sustainable Transportation Systems, Vienna Austria, June 2011, pp. 394399.
    12. 12)
      • 12. Hellström, E., Åslund, J., Nielsen, L.: ‘Design of an efficient algorithm for fuel-optimal look-ahead control’, Control Eng. Pract., 2010, 18, (11), pp. 13181327.
    13. 13)
      • 13. Li, S.: ‘Economy-oriented vehicle adaptive cruise control with coordinating multiple objectives function’, Veh. Syst. Dyn., 2013, 51, (1), pp. 117.
    14. 14)
      • 14. Xu, S., Li, S., Peng, H., et al: ‘Fuel-Saving cruising strategies for parallel HEV’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 46764686.
    15. 15)
      • 15. Lee, J. W., Prabhuswamy, S.: ‘A unified framework of adaptive cruise control for speed limit follower and curve speed control function’. Proc. SAE World Congress & Exhibition, Detroit, the United States, April 2013, pp. 201301–2010618.
    16. 16)
      • 16. Chen, Y., Li, X., Wiet, C., et al: ‘Energy management and driving strategy for In-wheel motor electric ground vehicles With terrain profile preview’, IEEE Trans. Ind. Inf., 2014, 10, (3), pp. 19381947.
    17. 17)
      • 17. Wang, Y., Boyd, S.: ‘Fast model predictive control using online optimization’, IEEE Trans. control Syst. Technol., 2010, 18, (2), pp. 267278.
    18. 18)
      • 18. Huang, Y., Khajepour, A., Wang, H., et al: ‘A predictive power management controller for service vehicle anti-idling systems without a priori information’, Appl. Energy, 2016, 182, (2018), pp. 548557.
    19. 19)
      • 19. Huang, Y., Fard, S. M., Khazraee, M., et al: ‘An adaptive model predictive controller for a novel battery-powered anti-idling system of service vehicles’, Energy, 2017, 127, (2017), pp. 318327.
    20. 20)
      • 20. Henzler, M., Buchholz, M., Dietmayer, K.: ‘Optimal parameter selection of a model predictive control algorithm for energy efficient driving of heavy duty vehicles’. Proc. IEEE Intelligent Vehicles Symp., Seoul Korea, June 2015, pp. 742748.
    21. 21)
      • 21. Fröberg, A., Hellström, E., Nielsen, L.: ‘A real-time fuel-optimal cruise controller for heavy trucks using road topography information’. Proc. SAE World Congress & Exhibition, Detroit, the United States, April 2006, pp. 2006-012000008.
    22. 22)
      • 22. Mensing, F., Trigui, R., Bideaux, E.: ‘Vehicle trajectory optimization for application in ECO-driving’. Proc. IEEE Vehicle Power and Propulsion Conf., Chicago, the United States, September 2011, pp. 16.
    23. 23)
      • 23. Nouveliere, L., Mammar, S., Luu, H.T.: ‘Energy saving and safe driving assistance system for light vehicles: experimentation and analysis’. Proc. IEEE Int. Conf. Networking, Sensing and Control, Beijing China, April 2012, pp. 346351.
    24. 24)
      • 24. Chevrant-Breton, O., Guan, T., Frey, C. W.: ‘Search space reduction in dynamic programming using monotonic heuristics in the context of model predictive optimization’. Proc. IEEE, Int. Conf. on Intelligent Transportation Systems, Qingdao China, October 2014, pp. 21132118.
    25. 25)
      • 25. Henzler, M., Buchholz, M., Dietmayer, K.: ‘Online velocity trajectory planning for manual energy efficient driving of heavy duty vehicles using model predictive control’. Proc. IEEE Int. Conf. Intelligent Transportation Systems, Qingdao China, October 2014, pp. 18141819.
    26. 26)
      • 26. Kamal, M. A. S., Mukai, M., Murata, J., et al: ‘Ecological vehicle control on roads With Up-down slopes’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (3), pp. 783794.
    27. 27)
      • 27. Hellström, E., Ivarsson, M., Åslund, J., et al: ‘Look-ahead control for heavy trucks to minimize trip time and fuel consumption’, Control Eng. Pract., 2009, 17, (2), pp. 245254.
    28. 28)
      • 28. Mattingley, J., Boyd, S.: ‘CVXGEN: A code generator for embedded convex optimization’, Optim. Eng., 2012, 13, (1), pp. 127.
    29. 29)
      • 29. Bertsekas, D.P.: ‘Distributed dynamic programming’, IEEE Trans. Autom. Control, 1981, 27, (3), pp. 610616.
    30. 30)
      • 30. Graichen, K., Käpernick, B.: ‘A real-time gradient method for nonlinear model predictive control’, in Zheng, T. (Ed.): ‘Frontiers of model predictive control’ (In Tech Press, Rijeka, Croatia, 2012, 1st edn.), pp. 928.
    31. 31)
      • 31. Käpernick, B, Graichen, K.: ‘The gradient based nonlinear model predictive control software GRAMPC’. Proc. European Control Conf., Strasbourg, France, June 2014, pp. 11701175.
    32. 32)
      • 32. Wang, Y., Boyd, S.: ‘Fast model predictive control using online optimization’, IEEE Trans. Control Syst. Technol., 2008, 41, (2), pp. 69746979.
    33. 33)
      • 33. Domahidi, A., Zgraggen, A. U., Zeilinger, M. N. M., et al: ‘Efficient interior point methods for multistage problems arising in receding horizon control’. Proc. IEEE Conf. Decision and Control, Hawaii, the United States, December 2012, pp. 668674.
    34. 34)
      • 34. Jones, C. N., Domahidi, A., Morari, M., et al: ‘Fast predictive control: real-time computation and certification’. Proc. IFAC Nonlinear Predictive Control Conf., Noordwijkerhout NL, August 2012, pp. 9498.
    35. 35)
      • 35. Ohtsuka, T.: ‘A continuation/GMRES method for fast computation of nonlinear receding horizon control’, Automatica, 2004, 40, (4), pp. 563574.
    36. 36)
      • 36. Nikol'skii, M.S.: ‘Convergence of the gradient projection method on optimal control problems’, Comput. Math. Model., 2007, 18, (2), pp. 148156.

Related content

This is a required field
Please enter a valid email address