Gated branch neural network for mandatory lane changing suggestion at the on-ramps of highway

Gated branch neural network for mandatory lane changing suggestion at the on-ramps of highway

For access to this article, please select a purchase option:

Buy eFirst article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A gated branch neural network (GBNN) is proposed for modelling mandatory lane changing (MLC) behaviour at the on-ramps of highways. It provides a core algorithm for an MLC suggestion system for advanced driver assistance systems (ADAS), where the main challenge is the trade-off between computational speed and prediction accuracy for both non-merge and merge events. The GBNN algorithm employs a gated branch based on correlation analysis, scaled exponential linear units activation function, and adaptive moment estimation optimiser. The algorithm has been evaluated using the real-world dataset of U.S. Highway 101 and Interstate 80 from Federal Highway Administration's Next Generation Simulation (NGSIM). Input features are extracted from NGSIM and pre-processed by standardisation and principal component analysis. TensorFlow framework and Python are used as the development platform. Results show that the proposed GBNN algorithm with the Pearson correlation method has values of 97.7%, 96.3%, and 0.990 for non-merge accuracy, merge accuracy, and receiver operating characteristic score, respectively. It outperforms other traditional binary classifiers for MLC applications, and is more light-weight than a convolutional neural network (AlexNet) of deep learning algorithm. Owing to its compact architecture, the GBNN provides high accuracy and efficiency, demonstrating promising usage as an MLC suggestion system in ADAS.

Related content

This is a required field
Please enter a valid email address