access icon free Moving horizon shared steering strategy for intelligent vehicle based on potential-hazard analysis

The collaboration between a human driver and an automation system will serve as an effective measure before the autonomous driving technology is fully implemented. To discuss the driving authority between a human driver and an automation system, a novel moving horizon shared steering framework is proposed, in which the controller assists the driver when the vehicle is in danger. First, a potential-hazard analysis is presented based on the potential steering operation error and lane departure distance to predict the degree of a hazard and to determine the driving authority between the human driver and the automation system. Then, the minimum collaborative steering operation is determined using a moving horizon optimisation approach with safety constraints. Thus, the automation system shares steering with the driver protect the vehicle from risks in a non-invasive manner. To demonstrate the effectiveness of the proposed strategy, simulations with different types of drivers and scenarios are conducted. The results of these simulations demonstrate that the proposed approach can enhance the driving ability of drivers with different skill levels in dangerous situations. The approach can also guarantee the safety of the intelligent vehicle to some extent when drivers lose focus for a period of time.

Inspec keywords: steering systems; human-robot interaction; mobile robots; optimisation; hazards

Other keywords: moving horizon shared steering framework; hazard degree prediction; moving horizon shared steering strategy; autonomous driving technology; lane departure distance; potential-hazard analysis; intelligent vehicle; potential steering operation error; moving horizon optimisation approach; automation system; safety constraints; driving authority; minimum collaborative steering operation

Subjects: Optimisation techniques; Optimisation; Mobile robots; Road-traffic system control; Health and safety aspects; Human-robot interaction; Robot and manipulator mechanics; Robotics

References

    1. 1)
      • 14. Koo, Y., Kim, J., Han, W.: ‘A method for driving control authority transition for cooperative autonomous vehicle’. IEEE Intelligent Vehicles Symp. (IV), Seoul, Korea, 2015, pp. 394399.
    2. 2)
      • 12. Hsu, Y.H.J., Laws, S.M., Gerdes, J.C.: ‘Estimation of tire slip angle and friction limits using steering torque’, IEEE Trans. Control Syst. Technol., 2010, 18, (4), pp. 896907.
    3. 3)
      • 10. Liebner, M., Klanner, F., Baumann, M., et al: ‘Velocity-based driver intent inference at urban intersections in the presence of preceding vehicles’, IEEE Intell. Transp. Syst., 2013, 5, (2), pp. 1021.
    4. 4)
      • 7. Hu, C., Wang, R., Yan, F.: ‘Integral sliding mode-based composite nonlinear feedback control for path following of four-wheel independently actuated autonomous vehicles’, IEEE Trans. Transp. Electrification, 2016, 2, (2), pp. 221230.
    5. 5)
      • 26. Choi, M., Jiwon, J.O., Choi, S.B.: ‘Predictive and linear quadratic methods for potential application to modelling driver steering control’, Veh. Syst. Dyn., 2006, 44, (3), pp. 259284.
    6. 6)
      • 23. Erlien, S.M., Fujita, S., Gerdes, J.C., et al: ‘Shared steering control using safe envelopes for obstacle avoidance and vehicle stability’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (2), pp. 441451.
    7. 7)
      • 11. Hu, C., Wang, R., Yan, F., et al: ‘Differential steering based Yaw stabilization using ISMC for independently actuated electric vehicles’, IEEE Trans. Intell. Transp. Syst., 2018, 99, pp. 112.
    8. 8)
      • 25. MacAdam, C.C.: ‘An optimal preview control for linear systems’, J. Dyn. Syst. Meas. Control, 1980, 102, (3), pp. 188190.
    9. 9)
      • 4. Sachin, B.S.M., Golla, V.: ‘Detection of potholes in autonomous vehicle’, IET Intell. Transp. Syst., 2014, 8, (6), pp. 543549.
    10. 10)
      • 19. Tan, D., Chen, W., Wang, H., et al: ‘Shared control for lane departure prevention based on the safe envelope of steering wheel angle’, Control Eng. Pract., 2017, 64, pp. 1526.
    11. 11)
      • 28. Wang, J., Alexander, L., Rajamani, R.: ‘Friction estimation on highway vehicles using longitudinal measurements’, J. Dyn. Syst. Meas. Control, 2004, 126, (2), pp. 265275.
    12. 12)
      • 18. Na, X., Cole, D.J.: ‘Game-theoretic modeling of the steering interaction between a human driver and a vehicle collision avoidance controller’, IEEE Trans. Hum. Mach. Syst., 2015, 45, (1), pp. 2538.
    13. 13)
      • 17. Anderson, S.J., Peters, S.C., Pilutti, T.E., et al: ‘An optimal-control-based framework for trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles in hazard avoidance scenarios’, Int. J. Veh. Auton. Syst., 2010, 8, (2–3), pp. 190216.
    14. 14)
      • 16. Mulder, M., Abbink, D.A., Boer, E.R.: ‘Sharing control with haptics seamless driver support from manual to automatic control’, Hum. Factors, 2012, 54, (5), pp. 786798.
    15. 15)
      • 2. Soualmi, B., Sentouh, C., Popieul, J.C., et al: ‘Automation–driver cooperative driving in presence of undetected obstacles’, Control Eng. Pract., 2014, 24, pp. 106119.
    16. 16)
      • 5. Kim, E., Kim, J., Sunwoo, M.: ‘Model predictive control strategy for smooth path tracking of autonomous vehicles with steering actuator dynamics’, Int. J. Automot. Technol., 2014, 15, (7), pp. 11551164.
    17. 17)
      • 31. Pan, F.Q., Zhang, L.X., Liu, T., et al: ‘Modeling of driving behaviors at countdown signalized intersections considering the value of car’, J. Transp. Syst. Eng. Inf. Technol., 2016, 16, (2), pp. 6469.
    18. 18)
      • 15. Wada, T., Sonoda, K., Okasaka, T., et al: ‘Authority transfer method from automated to manual driving via haptic shared control’. 2016 IEEE Int. Conf. Syst., Man, and Cybernetics (SMC), Budapest, Hungary, 2016, pp. 002659002664.
    19. 19)
      • 6. SAE International: ‘Taxonomy and definitions for terms related to on road motor vehicle automated driving systems (standard no. j3016)’, 2014.
    20. 20)
      • 8. Hu, C., Jing, W., Wang, R, et al: ‘Robust H-infinity output-feedback control for path following of autonomous ground vehicles’, Mech. Syst. Signal Process., 2015, 70, pp. 414427.
    21. 21)
      • 24. Keen, S., Cole, D.: ‘Application of time-variant predictive control to modelling driver steering skill’, Veh. Syst. Dyn., 2011, 49, (4), pp. 527559.
    22. 22)
      • 27. Bradai, A., Fekher, K., Singh, K., et al: ‘Localization and energy efficient data routing for unmanned aerial vehicles: fuzzy logic based approach’, IEEE Commun. Mag., 2017, 56, (4), pp. 129133.
    23. 23)
      • 13. Anderson, S.J., Karumanchi, S.B., Iagnemma, K., et al: ‘The intelligent copilot: a constraint-based approach to shared-adaptive control of ground vehicles’, IEEE Intell. Transp. Syst., 2013, 5, (2), pp. 4554.
    24. 24)
      • 1. Lin, C., Juang, J., Li, K.: ‘Active collision avoidance system for steering control of autonomous vehicles’, IET Intell. Transp. Syst., 2017, 8, (6), pp. 550557.
    25. 25)
      • 3. Huang, Y., Wang, H., Khajepour, A., et al: ‘Model predictive control power management strategies for HEVs: a review’, J. Power Sources, 2017, 341, pp. 91106.
    26. 26)
      • 22. Saleh, L., Chevrel, P., Claveau, F., et al: ‘Shared steering control between a driver and an automation: stability in the presence of driver behavior uncertainty’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (2), pp. 974983.
    27. 27)
      • 30. Li, B.Y., Du, H.P., Li, W.H., et al: ‘Side-slip angle estimation based lateral dynamics control for omni-directional vehicles with optimal steering angle and traction/brake torque distribution’, Mechatronics, 2015, 30, pp. 348362.
    28. 28)
      • 21. Gao, Y., Lin, T., Borrelli, F., et al: ‘Predictive control of autonomous ground vehicles with obstacle avoidance on slippery roads’. IEEE ASME 2010 Dynamic Systems Control Conf., Cambridge, MA, USA, 2010, pp. 265272.
    29. 29)
      • 29. Rajamani, R., Phanomchoeng, G., Piyabongkarn, D., et al: ‘Algorithms for real–time estimation of individual wheel tire-road friction coefficients’, IEEE/ASME Trans. Mechatronics, 2012, 17, (6), pp. 11831195.
    30. 30)
      • 9. Wang, R., Jing, H., Hu, C., et al: ‘Robust H-infinity path following control for autonomous ground vehicles with delay and data dropout’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (7), pp. 20422050.
    31. 31)
      • 20. Li, Y., Ge, S.S.: ‘Human–robot collaboration based on motion intention estimation’, IEEE/ASME Trans. Mechatronics, 2014, 19, (3), pp. 10071014.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.5092
Loading

Related content

content/journals/10.1049/iet-its.2018.5092
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading