access icon free Robust H state feedback control for handling stability of intelligent vehicles on a novel all-wheel independent steering mode

We propose an H dynamics controller for an all-wheel independent steering. A norm-bounded method is used to describe the uncertainties in the system. A new reference model aimed at minimising the yaw rate and making the sideslip angle remain the same as the target sideslip angle is proposed; this will help especially when a vehicle changes lanes. Simulation and experimental results indicate that the controller can help improve the handling stability and correct directional problems when the vehicle's direction is changed by the steering angle.

Inspec keywords: mechanical stability; steering systems; state feedback; vehicle dynamics; H∞ control; robust control

Other keywords: reference model; target sideslip angle; all-wheel independent steering mode; intelligent vehicles; yaw rate minimisation; vehicle changes lanes; experimental results; handling stability; H∞ dynamics controller; robust H∞ state feedback control; norm-bounded method; steering angle

Subjects: Control technology and theory (production); Transportation system control; Optimal control; Vehicle mechanics; Buckling and instability (mechanical engineering); Stability in control theory

References

    1. 1)
      • 7. Choi, M., Choi, S.B.: ‘Model predictive control for vehicle yaw stability with practical concerns’, IEEE Trans. Veh. Technol., 2012, 63, (8), pp. 35393548.
    2. 2)
      • 11. Hu, C., Wang, R., Yan, F.: ‘Integral sliding mode-based composite nonlinear feedback control for path following of four-wheel independently actuated autonomous vehicles’, IEEE Trans. Transp. Electrification, 2016, 2, (2), pp. 221230.
    3. 3)
      • 26. Zhang, H., Wang, R., Wang, J., et al: ‘Robust finite frequency H static-output-feedback control with application to vibration active control of structural systems’, Mechatronics, 2013, 22, (4), pp. 354366.
    4. 4)
      • 14. Shuai, Z., Zhang, H., Wang, J.: ‘Combined AFS and DYC control of four-wheel independent drive electric vehicles over CAN network with time-varying delays’, IEEE Trans. Veh. Technol., 2014, 63, (2), pp. 591602.
    5. 5)
      • 4. Guvenc, B.A., Guvenc, L., Karaman, S.: ‘Robust yaw stability controller design and hardware-in-the-loop testing for a road vehicle’, IEEE Trans. Veh. Technol., 2009, 58, (2), pp. 555571.
    6. 6)
      • 2. Mirzaei, M., Mirzaeinejad, H.: ‘Optimal design of a non-linear controller for anti-lock braking system’, Transp. Res. C, Emerg. Technol., 2012, 24, pp. 1935.
    7. 7)
      • 6. Huang, Y., Fard, S., Khazraee, M., et al: ‘An adaptive model predictive controller for a novel battery-powered anti-idling system of service vehicles’, Energy, 2017, 127, pp. 318327.
    8. 8)
      • 20. Caruntu, C.F., Lazar, M., Gielen, R.H., et al: ‘Lyapunov based predictive control of vehicle drivetrains over CAN’, Control Eng. Pract., 2013, 21, (12), pp. 18841898.
    9. 9)
      • 1. Raksincharoensak, P., Nagai, M., Shino, M.: ‘Lane keeping control strategy with direct yaw moment control input by considering dynamics of electric vehicle’, Veh. Syst. Dyn., 2006, 44, (1), pp. 192201.
    10. 10)
      • 25. Zhang, H., Wang, J.M.: ‘Vehicle lateral dynamics control through AFS/DYC and robust gain-scheduling approach’, IEEE Trans. Veh. Technol., 2016, 65, (1), pp. 489494.
    11. 11)
      • 23. Zhang, H., Zhang, X.J., Wang, J.M.: ‘Robust gain-scheduling energy to peak control of vehicle lateral dynamics stabilization’, Veh. Syst. Dyn., 2014, 52, (3), pp. 309340.
    12. 12)
      • 24. Wang, Z., Dong, M., Qin, Y., et al: ‘Vehicle system state estimation based on adaptive Unscented Kalman filtering combing with road classification’, IEEE Access, 2017, 5, pp. 2778627799, doi: 10.1109/ACCESS.2017.2771204.
    13. 13)
      • 16. Hu, C., Wang, R., Yan, F., et al: ‘Differential steering based yaw stabilization using ISMC for independently actuated electric vehicles’, IEEE Trans. Intell. Transp. Syst., 2018, 19, (2), pp. 627638.
    14. 14)
      • 18. Fang, H., Dou, L., Chen, J., et al: ‘Robust anti-sliding control of autonomous vehicles in presence of lateral disturbances’, Control Eng. Pract., 2011, 19, (5), pp. 468478.
    15. 15)
      • 17. Qin, Y., Dong, M., Zhao, F., et al: ‘Comprehensive analysis influence of controllable damper time delay on semi-active suspension control strategies’, J. Vib. Acoust.-Trans. ASME, 2017, 139, (3), pp. 031006031006-12, doi: 10.1115/1.4035700.
    16. 16)
      • 9. Yu, Z.P., Feng, Y., Xiong, L.: ‘Review on vehicle dynamics control of distributed drive electric vehicle’, J. Mech. Eng., 2013, 49, (8), pp. 105114.
    17. 17)
      • 3. Tang, X., Yang, W., Hu, X., et al: ‘A novel simplified model for torsional vibration analysis of a series–parallel hybrid electric vehicle’, Mech. Syst. Signal Process., 2017, 85, pp. 329338.
    18. 18)
      • 27. Goodarzi, A., Sabooteh, A., Esmailzadeh, E.: ‘Automac path control based on integrated steering and external yaw-moment control’, Proc. Inst. Mech. Eng., 2008, 222, (2), pp. 189200.
    19. 19)
      • 22. Wang, R., Jing, H., Hu, C., et al: ‘Robust H path following control for autonomous ground vehicles with delay and data dropout’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (7), pp. 20422050.
    20. 20)
      • 21. Lazar, M.: ‘Flexible control Lyapunov functions’. 28th American Control Conf., St. Louis, MO, USA, 2009, pp. 102107.
    21. 21)
      • 8. Croft-White, M., Harrison, M.: ‘Study of torque vectoring for all-wheel-drive vehicles’, Veh. Syst. Dyn., 2006, 1, (44), pp. 313320.
    22. 22)
      • 5. Naito, G., Yaguchi, E., Matuda, T., et al: ‘New electronically controlled torque split 4WD system for improving cornering performance’. SAE. 900556, 1990.
    23. 23)
      • 13. Du, H.P., Zhang, N., Dong, G.M.: ‘Stabilizing vehicle lateral dynamics with considerations of parameter uncertainties and control saturation through robust yaw control’, IEEE Trans. Veh. Technol., 2010, 59, (5), pp. 25932597.
    24. 24)
      • 10. Hu, C., Jing, H., Wang, R., et al: ‘Robust H output-feedback control for path following of autonomous ground vehicles’, Mech. Syst. Signal Process., 2016, 70–71, pp. 414427.
    25. 25)
      • 15. Geng, C., Mostefai, L., Denai, M., et al: ‘Direct yaw-moment control of an in-wheel-motored electric vehicle based on body slip angle observer’, IEEE Trans. Ind. Electron., 2009, 56, (5), pp. 14111419.
    26. 26)
      • 12. Huang, Y., Ding, H., Zhang, Y., et al: ‘A motion planning and tracking framework for autonomous vehicles based on artificial potential field-elaborated resistance network (APFE-RN) approach’, IEEE Trans. Ind. Electron., 2019.
    27. 27)
      • 19. Consolini, L., Verrelli, C.M.: ‘Learning control in spatial coordinates for the path following of autonomous vehicles’, Automatia, 2014, 50, (7), pp. 18671874.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.5078
Loading

Related content

content/journals/10.1049/iet-its.2018.5078
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading