Robust H state feedback control for handling stability of intelligent vehicles on a novel all-wheel independent steering mode

Robust H state feedback control for handling stability of intelligent vehicles on a novel all-wheel independent steering mode

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

We propose an H dynamics controller for an all-wheel independent steering. A norm-bounded method is used to describe the uncertainties in the system. A new reference model aimed at minimising the yaw rate and making the sideslip angle remain the same as the target sideslip angle is proposed; this will help especially when a vehicle changes lanes. Simulation and experimental results indicate that the controller can help improve the handling stability and correct directional problems when the vehicle's direction is changed by the steering angle.


    1. 1)
      • 1. Raksincharoensak, P., Nagai, M., Shino, M.: ‘Lane keeping control strategy with direct yaw moment control input by considering dynamics of electric vehicle’, Veh. Syst. Dyn., 2006, 44, (1), pp. 192201.
    2. 2)
      • 2. Mirzaei, M., Mirzaeinejad, H.: ‘Optimal design of a non-linear controller for anti-lock braking system’, Transp. Res. C, Emerg. Technol., 2012, 24, pp. 1935.
    3. 3)
      • 3. Tang, X., Yang, W., Hu, X., et al: ‘A novel simplified model for torsional vibration analysis of a series–parallel hybrid electric vehicle’, Mech. Syst. Signal Process., 2017, 85, pp. 329338.
    4. 4)
      • 4. Guvenc, B.A., Guvenc, L., Karaman, S.: ‘Robust yaw stability controller design and hardware-in-the-loop testing for a road vehicle’, IEEE Trans. Veh. Technol., 2009, 58, (2), pp. 555571.
    5. 5)
      • 5. Naito, G., Yaguchi, E., Matuda, T., et al: ‘New electronically controlled torque split 4WD system for improving cornering performance’. SAE. 900556, 1990.
    6. 6)
      • 6. Huang, Y., Fard, S., Khazraee, M., et al: ‘An adaptive model predictive controller for a novel battery-powered anti-idling system of service vehicles’, Energy, 2017, 127, pp. 318327.
    7. 7)
      • 7. Choi, M., Choi, S.B.: ‘Model predictive control for vehicle yaw stability with practical concerns’, IEEE Trans. Veh. Technol., 2012, 63, (8), pp. 35393548.
    8. 8)
      • 8. Croft-White, M., Harrison, M.: ‘Study of torque vectoring for all-wheel-drive vehicles’, Veh. Syst. Dyn., 2006, 1, (44), pp. 313320.
    9. 9)
      • 9. Yu, Z.P., Feng, Y., Xiong, L.: ‘Review on vehicle dynamics control of distributed drive electric vehicle’, J. Mech. Eng., 2013, 49, (8), pp. 105114.
    10. 10)
      • 10. Hu, C., Jing, H., Wang, R., et al: ‘Robust H output-feedback control for path following of autonomous ground vehicles’, Mech. Syst. Signal Process., 2016, 70–71, pp. 414427.
    11. 11)
      • 11. Hu, C., Wang, R., Yan, F.: ‘Integral sliding mode-based composite nonlinear feedback control for path following of four-wheel independently actuated autonomous vehicles’, IEEE Trans. Transp. Electrification, 2016, 2, (2), pp. 221230.
    12. 12)
      • 12. Huang, Y., Ding, H., Zhang, Y., et al: ‘A motion planning and tracking framework for autonomous vehicles based on artificial potential field-elaborated resistance network (APFE-RN) approach’, IEEE Trans. Ind. Electron., 2019.
    13. 13)
      • 13. Du, H.P., Zhang, N., Dong, G.M.: ‘Stabilizing vehicle lateral dynamics with considerations of parameter uncertainties and control saturation through robust yaw control’, IEEE Trans. Veh. Technol., 2010, 59, (5), pp. 25932597.
    14. 14)
      • 14. Shuai, Z., Zhang, H., Wang, J.: ‘Combined AFS and DYC control of four-wheel independent drive electric vehicles over CAN network with time-varying delays’, IEEE Trans. Veh. Technol., 2014, 63, (2), pp. 591602.
    15. 15)
      • 15. Geng, C., Mostefai, L., Denai, M., et al: ‘Direct yaw-moment control of an in-wheel-motored electric vehicle based on body slip angle observer’, IEEE Trans. Ind. Electron., 2009, 56, (5), pp. 14111419.
    16. 16)
      • 16. Hu, C., Wang, R., Yan, F., et al: ‘Differential steering based yaw stabilization using ISMC for independently actuated electric vehicles’, IEEE Trans. Intell. Transp. Syst., 2018, 19, (2), pp. 627638.
    17. 17)
      • 17. Qin, Y., Dong, M., Zhao, F., et al: ‘Comprehensive analysis influence of controllable damper time delay on semi-active suspension control strategies’, J. Vib. Acoust.-Trans. ASME, 2017, 139, (3), pp. 031006031006-12, doi: 10.1115/1.4035700.
    18. 18)
      • 18. Fang, H., Dou, L., Chen, J., et al: ‘Robust anti-sliding control of autonomous vehicles in presence of lateral disturbances’, Control Eng. Pract., 2011, 19, (5), pp. 468478.
    19. 19)
      • 19. Consolini, L., Verrelli, C.M.: ‘Learning control in spatial coordinates for the path following of autonomous vehicles’, Automatia, 2014, 50, (7), pp. 18671874.
    20. 20)
      • 20. Caruntu, C.F., Lazar, M., Gielen, R.H., et al: ‘Lyapunov based predictive control of vehicle drivetrains over CAN’, Control Eng. Pract., 2013, 21, (12), pp. 18841898.
    21. 21)
      • 21. Lazar, M.: ‘Flexible control Lyapunov functions’. 28th American Control Conf., St. Louis, MO, USA, 2009, pp. 102107.
    22. 22)
      • 22. Wang, R., Jing, H., Hu, C., et al: ‘Robust H path following control for autonomous ground vehicles with delay and data dropout’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (7), pp. 20422050.
    23. 23)
      • 23. Zhang, H., Zhang, X.J., Wang, J.M.: ‘Robust gain-scheduling energy to peak control of vehicle lateral dynamics stabilization’, Veh. Syst. Dyn., 2014, 52, (3), pp. 309340.
    24. 24)
      • 24. Wang, Z., Dong, M., Qin, Y., et al: ‘Vehicle system state estimation based on adaptive Unscented Kalman filtering combing with road classification’, IEEE Access, 2017, 5, pp. 2778627799, doi: 10.1109/ACCESS.2017.2771204.
    25. 25)
      • 25. Zhang, H., Wang, J.M.: ‘Vehicle lateral dynamics control through AFS/DYC and robust gain-scheduling approach’, IEEE Trans. Veh. Technol., 2016, 65, (1), pp. 489494.
    26. 26)
      • 26. Zhang, H., Wang, R., Wang, J., et al: ‘Robust finite frequency H static-output-feedback control with application to vibration active control of structural systems’, Mechatronics, 2013, 22, (4), pp. 354366.
    27. 27)
      • 27. Goodarzi, A., Sabooteh, A., Esmailzadeh, E.: ‘Automac path control based on integrated steering and external yaw-moment control’, Proc. Inst. Mech. Eng., 2008, 222, (2), pp. 189200.

Related content

This is a required field
Please enter a valid email address