Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Modelling and testing of in-wheel motor drive intelligent electric vehicles based on co-simulation with Carsim/Simulink

To study the overall performance of the distributed drive intelligent electric vehicle (EV), a in-wheel motor drive (IWMD) vehicle is developed in this study. The configuration and 11-degrees of freedom model of IWMD EV is introduced firstly. Then, the co-simulation model of IWMD EV based on Carsim and Matlab/Simulink is established. The block design is employed for the co-simulation modelling, including the in-wheel motor model, driver model, tyre model, steering model, braking model, suspension model, aerodynamic model, and road surface model. The effectiveness and the reasonableness of the co-simulation model of IWMD EV are verified by the snake testing with on the campus road. The co-simulation model provides accuracy and reliable simulation method for the path-tracking and self-driving study of IWMD intelligent vehicle in the future.

References

    1. 1)
      • 31. He, H., Xiong, R., Fan, J.: ‘Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach’, Energies, 2011, 4, pp. 582598.
    2. 2)
      • 37. Li, L., Wang, F., Zhou, Q.: ‘Integrated longitudinal and lateral tire/road friction modeling and monitoring for vehicle motion control’, IEEE Trans. Intell. Transp. Syst., 2006, 7, (1), pp. 119.
    3. 3)
      • 23. Huang, Y., Khajepour, A., Zhu, T., et al: ‘A supervisory energy-saving controller for a novel anti-idling system of service vehicles’, IEEE/ASME Trans. Mechatronics, 2017, 22, (2), pp. 10371046.
    4. 4)
      • 22. Diao, X., Zhu, H.: ‘Survey of decoupling control strategies for bearingless synchronous reluctance motor’, J. Jiangsu Univ. (Nat. Sci. Ed., 2017, 38, (6), pp. 687695.
    5. 5)
      • 5. Li, B., Du, H., Li, W.: ‘A potential field approach-based trajectory control for autonomous electric vehicles with in-wheel motors’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (8), pp. 20442055.
    6. 6)
      • 36. Hsiao, T.: ‘Robust estimation and control of tire traction forces’, IEEE Trans. Veh. Technol., 2013, 62, (3), pp. 13781383.
    7. 7)
      • 21. Huang, Y., Khajepour, A., Khazraee, M., et al: ‘A comparative study of the energy-saving controllers for automotive air-conditioning/refrigeration systems’, J. Dyn. Syst., Meas. Contr., 2017, 139, pp. 19.
    8. 8)
      • 38. Wang, R., Zhang, H., Wang, J.: ‘Linear parameter-varying controller design for four-wheel independently actuated electric ground vehicles with active steering systems’, IEEE Trans. Control Syst. Technol., 2014, 22, (4), pp. 12811296.
    9. 9)
      • 33. Ding, H., Guo, K.: ‘Arbitrary path and speed following driver model based on vehicle acceleration feedback’, Journal of Mechanical Engineering, 2012, 5, (10), pp. 116120.
    10. 10)
      • 4. Wang, R., Wang, J.: ‘Actuator-redundancy-based fault diagnosis for four-wheel independently actuated electric vehicles’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (1), pp. 239249.
    11. 11)
      • 35. Rezaeian, A.: ‘Novel tire force estimation strategy for real-time implementation on vehicle applications’, IEEE Trans. Veh. Technol., 2015, 64, (6), pp. 22312241.
    12. 12)
      • 3. Li, B., Goodarzi, A., Khajepour, A., et al: ‘An optimal torque distribution control strategy for four-independent wheel drive electric vehicles’, Veh. Syst. Dyn., 2015, 53, (8), pp. 11721189.
    13. 13)
      • 25. Zhang, N., Zhou, C., Gao, Z., et al: ‘Torque distribution strategy of PHEV based on FCMAC neural network’, J. Jiangsu Univ. (Nat. Sci. Ed., 2017, 38, (6), pp. 652657.
    14. 14)
      • 10. Wang, G., Ma, J., Yan, M.: ‘Study of mathematical model of electric vehicle driven by permanent magnet DC motor’, Chin. J. Highway. Transport., 2011, 24, (1), pp. 122126.
    15. 15)
      • 28. Huang, Y., Fard, S., Khazraee, M., et al: ‘An adaptive model predictive controller for a novel battery-powered anti-idling system of service vehicles’, Energy, 2017, 127, pp. 318327.
    16. 16)
      • 19. Hashemi, E., Pirani, M., Khajepour, A., et al: ‘Opinion dynamics-based vehicle velocity estimation and diagnosis’, IEEE Trans. Intell. Transp. Syst., 2017, 99, pp. 17.
    17. 17)
      • 11. Yang, F.: ‘Research on Anti-skid and yaw stability control of 4WID/4WIS electrical vehicle’, PhD thesis, Shandong University, 2010..
    18. 18)
      • 8. Jin, L., Song, C, Hu, C.: ‘Driving force power steering for the electric vehicles with motorized wheelsi’, 2009 IEEE Vehicle Power and Propulsion Conf., Dearborn, MI, 2009, pp. 15181524.
    19. 19)
      • 39. Jiang, H., Li, C., Ma, S., et al: ‘Path tracking control of automatic parking for intelligent vehicle based on non-smooth control strategy’, Journal of Jiangsu University (Natural Science Edition, 2017, 38, (5), pp. 497502.
    20. 20)
      • 12. Zong, C., Liu, J., Zheng, H.: ‘Modeling and special conditions simulation of electric vehicle with 4WID/4WIS’’, Automot. Eng., 2011, 33, (10), pp. 829833.
    21. 21)
      • 7. Guo, K., Chen, Y., Yang, Y., et al: ‘Modeling and simulation of a hydro-pneumatic spring based on internal characteristics’. 2011 Second Int. Conf. on Mechanic Automation and Control Engineering, Hohhot, 2011, pp. 59105915.
    22. 22)
      • 27. Song, Q., Wan, H., Mi, Y., et al: ‘Optimum control strategy of drive torque for pure electric vehicles during acceleration’, J. Jiangsu Univ. (Nat. Sci. Ed., 2017, 38, (1), pp. 16.
    23. 23)
      • 42. Tang, X., Du, H., Sun, S., et al: ‘Takagi–Sugeno fuzzy control for semi-active vehicle suspension with a magnetorheological damper and experimental validation’, IEEE/ASME Trans. Mechatronics, 2017, 22, (1), pp. 291300.
    24. 24)
      • 18. Rasekhipour, Y., Khajepour, A., Chen, S., et al: ‘A potential field-based model predictive path-planning controller for autonomous road vehicles’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (5), pp. 12551267.
    25. 25)
      • 9. Liu, C.: ‘Research on drive control system for four-wheel independent driven electric vehicle’, PhD thesis, Wuhan University of Technology, 2009..
    26. 26)
      • 6. Liu, W., Khajepour, A., He, H., et al: ‘Integrated torque vectoring control for a three-axle electric bus based on holistic cornering control method’, IEEE Trans. Veh. Technol., 2017, 99, pp. 113.
    27. 27)
      • 16. Wang, R., Wang, J.: ‘Passive actuator fault-tolerant control for a class of overactuated nonlinear systems and applications to electric vehicles’, IEEE Trans. Veh. Technol., 2013, 62, (3), pp. 972985.
    28. 28)
      • 2. Li, Y., Li, B., Sun, X., et al: ‘A nonlinear decoupling approach using RBFNNI-based robust pole placement for a permanent magnet in-wheel motor’, IEEE Access, 2018, 6, (1), pp. 18441854.
    29. 29)
      • 40. Huang, C., Naghdy, F., Du, H.: ‘Delta operator-based fault estimation and fault-tolerant model predictive control for steer-by-wire systems’, IEEE Trans. Control Syst. Technol., 2018, 26, (5), pp. 18101817.
    30. 30)
      • 14. Xin, X., Shan, H., Yang, Y.: ‘Control strategy for motor drive system of electric vehicle’, IEEJ Trans. Electr. Electron. Eng., 2016, 11, (3), pp. 374383.
    31. 31)
      • 34. Macadam, C.: ‘Understanding and modeling the human driver’, International Journal of Vehicle Mechanics and Mobility, 2003, 40, (1), pp. 101134.
    32. 32)
      • 13. Li, Z., Wang, W., Xu, X., et al: ‘Willans model of electric motor for electric vehicle based on least squares support vector machine’, J. Jiangsu Univ. (Nat. Sci. Ed., 2016, 37, (4), pp. 381385.
    33. 33)
      • 41. Huang, W., Yu, M., Fu, W., et al: ‘Analysis of influencing factors on testing results of vehicle roller anti-force brake testing platform’, Journal of Jiangsu University (Natural Science Edition, 2017, 37, (4), pp. 497502.
    34. 34)
      • 24. Yan, F., Wang, J., Huang, K.: ‘Hybrid electric vehicle model predictive control torque-split strategy incorporating engine transient characteristics’, IEEE Trans. Veh. Technol., 2012, 61, (6), pp. 24582467.
    35. 35)
      • 30. Pan, C., Zhang, L., Chen, L., et al: ‘Heating analysis and experiment of lithium battery for different discharge rates’, J. Jiangsu Univ. (Nat. Sci. Ed., 2017, 38, (2), pp. 133138.
    36. 36)
      • 43. Asadi, E., Ribeiro, R., Khamesee, M., et al: ‘Analysis, prototyping, and experimental characterization of an adaptive hybrid electromagnetic damper for automotive suspension systems’, IEEE Trans. Veh. Technol., 2017, 66, (5), pp. 37033713.
    37. 37)
      • 26. Kasinathan, D., Kasaiezadeh, A., Wong, A., et al: ‘An optimal torque vectoring control for vehicle applications via real-time constraints’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 43684378.
    38. 38)
      • 17. Li, B., Du, H., Li, W.: ‘Trajectory control for autonomous electric vehicles with in-wheel motors based on a dynamics model approach’, IET Intell. Transp. Syst., 2016, 10, (5), pp. 318330.
    39. 39)
      • 1. Ehsani, M., Gao, Y., Emadi, A.: ‘Modern electric, hybrid electric, and fuel cell vehicles-fundamentals, theory and design, second edition’, (CRC Press, Boca Raton, FL, USA, 2010)..
    40. 40)
      • 20. He, R., Xu, Y.: ‘Shift schedule of parallel hybrid electric vehicles under hybrid driving mode’, J. Jiangsu Univ. (Nat. Sci, Ed., 2016, 37, (6), pp. 657662.
    41. 41)
      • 15. Wang, R., Zhang, H., Wang, J.: ‘Linear parameter-varying-based fault-tolerant controller design for a class of over-actuated non-linear systems with applications to electric vehicles’, IET Control Theory Applic., 2014, 8, (9), pp. 705717.
    42. 42)
      • 32. Song, Y., Gao, L.: ‘Incremental battery model using wavelet-based neural networks’, IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1, (7), pp. 10751081.
    43. 43)
      • 29. Bhide, S., Shim, T.: ‘Novel predictive electric Li-Ion battery model incorporating thermal and rate factor effects’, IEEE Trans. Veh. Technol., 2011, 60, (3), pp. 819829.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.5047
Loading

Related content

content/journals/10.1049/iet-its.2018.5047
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address