http://iet.metastore.ingenta.com
1887

Modelling and testing of in-wheel motor drive intelligent electric vehicles based on co-simulation with Carsim/Simulink

Modelling and testing of in-wheel motor drive intelligent electric vehicles based on co-simulation with Carsim/Simulink

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

To study the overall performance of the distributed drive intelligent electric vehicle (EV), a in-wheel motor drive (IWMD) vehicle is developed in this study. The configuration and 11-degrees of freedom model of IWMD EV is introduced firstly. Then, the co-simulation model of IWMD EV based on Carsim and Matlab/Simulink is established. The block design is employed for the co-simulation modelling, including the in-wheel motor model, driver model, tyre model, steering model, braking model, suspension model, aerodynamic model, and road surface model. The effectiveness and the reasonableness of the co-simulation model of IWMD EV are verified by the snake testing with on the campus road. The co-simulation model provides accuracy and reliable simulation method for the path-tracking and self-driving study of IWMD intelligent vehicle in the future.

References

    1. 1)
      • 1. Ehsani, M., Gao, Y., Emadi, A.: ‘Modern electric, hybrid electric, and fuel cell vehicles-fundamentals, theory and design, second edition’, (CRC Press, Boca Raton, FL, USA, 2010)..
    2. 2)
      • 2. Li, Y., Li, B., Sun, X., et al: ‘A nonlinear decoupling approach using RBFNNI-based robust pole placement for a permanent magnet in-wheel motor’, IEEE Access, 2018, 6, (1), pp. 18441854.
    3. 3)
      • 3. Li, B., Goodarzi, A., Khajepour, A., et al: ‘An optimal torque distribution control strategy for four-independent wheel drive electric vehicles’, Veh. Syst. Dyn., 2015, 53, (8), pp. 11721189.
    4. 4)
      • 4. Wang, R., Wang, J.: ‘Actuator-redundancy-based fault diagnosis for four-wheel independently actuated electric vehicles’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (1), pp. 239249.
    5. 5)
      • 5. Li, B., Du, H., Li, W.: ‘A potential field approach-based trajectory control for autonomous electric vehicles with in-wheel motors’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (8), pp. 20442055.
    6. 6)
      • 6. Liu, W., Khajepour, A., He, H., et al: ‘Integrated torque vectoring control for a three-axle electric bus based on holistic cornering control method’, IEEE Trans. Veh. Technol., 2017, 99, pp. 113.
    7. 7)
      • 7. Guo, K., Chen, Y., Yang, Y., et al: ‘Modeling and simulation of a hydro-pneumatic spring based on internal characteristics’. 2011 Second Int. Conf. on Mechanic Automation and Control Engineering, Hohhot, 2011, pp. 59105915.
    8. 8)
      • 8. Jin, L., Song, C, Hu, C.: ‘Driving force power steering for the electric vehicles with motorized wheelsi’, 2009 IEEE Vehicle Power and Propulsion Conf., Dearborn, MI, 2009, pp. 15181524.
    9. 9)
      • 9. Liu, C.: ‘Research on drive control system for four-wheel independent driven electric vehicle’, PhD thesis, Wuhan University of Technology, 2009..
    10. 10)
      • 10. Wang, G., Ma, J., Yan, M.: ‘Study of mathematical model of electric vehicle driven by permanent magnet DC motor’, Chin. J. Highway. Transport., 2011, 24, (1), pp. 122126.
    11. 11)
      • 11. Yang, F.: ‘Research on Anti-skid and yaw stability control of 4WID/4WIS electrical vehicle’, PhD thesis, Shandong University, 2010..
    12. 12)
      • 12. Zong, C., Liu, J., Zheng, H.: ‘Modeling and special conditions simulation of electric vehicle with 4WID/4WIS’’, Automot. Eng., 2011, 33, (10), pp. 829833.
    13. 13)
      • 13. Li, Z., Wang, W., Xu, X., et al: ‘Willans model of electric motor for electric vehicle based on least squares support vector machine’, J. Jiangsu Univ. (Nat. Sci. Ed., 2016, 37, (4), pp. 381385.
    14. 14)
      • 14. Xin, X., Shan, H., Yang, Y.: ‘Control strategy for motor drive system of electric vehicle’, IEEJ Trans. Electr. Electron. Eng., 2016, 11, (3), pp. 374383.
    15. 15)
      • 15. Wang, R., Zhang, H., Wang, J.: ‘Linear parameter-varying-based fault-tolerant controller design for a class of over-actuated non-linear systems with applications to electric vehicles’, IET Control Theory Applic., 2014, 8, (9), pp. 705717.
    16. 16)
      • 16. Wang, R., Wang, J.: ‘Passive actuator fault-tolerant control for a class of overactuated nonlinear systems and applications to electric vehicles’, IEEE Trans. Veh. Technol., 2013, 62, (3), pp. 972985.
    17. 17)
      • 17. Li, B., Du, H., Li, W.: ‘Trajectory control for autonomous electric vehicles with in-wheel motors based on a dynamics model approach’, IET Intell. Transp. Syst., 2016, 10, (5), pp. 318330.
    18. 18)
      • 18. Rasekhipour, Y., Khajepour, A., Chen, S., et al: ‘A potential field-based model predictive path-planning controller for autonomous road vehicles’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (5), pp. 12551267.
    19. 19)
      • 19. Hashemi, E., Pirani, M., Khajepour, A., et al: ‘Opinion dynamics-based vehicle velocity estimation and diagnosis’, IEEE Trans. Intell. Transp. Syst., 2017, 99, pp. 17.
    20. 20)
      • 20. He, R., Xu, Y.: ‘Shift schedule of parallel hybrid electric vehicles under hybrid driving mode’, J. Jiangsu Univ. (Nat. Sci, Ed., 2016, 37, (6), pp. 657662.
    21. 21)
      • 21. Huang, Y., Khajepour, A., Khazraee, M., et al: ‘A comparative study of the energy-saving controllers for automotive air-conditioning/refrigeration systems’, J. Dyn. Syst., Meas. Contr., 2017, 139, pp. 19.
    22. 22)
      • 22. Diao, X., Zhu, H.: ‘Survey of decoupling control strategies for bearingless synchronous reluctance motor’, J. Jiangsu Univ. (Nat. Sci. Ed., 2017, 38, (6), pp. 687695.
    23. 23)
      • 23. Huang, Y., Khajepour, A., Zhu, T., et al: ‘A supervisory energy-saving controller for a novel anti-idling system of service vehicles’, IEEE/ASME Trans. Mechatronics, 2017, 22, (2), pp. 10371046.
    24. 24)
      • 24. Yan, F., Wang, J., Huang, K.: ‘Hybrid electric vehicle model predictive control torque-split strategy incorporating engine transient characteristics’, IEEE Trans. Veh. Technol., 2012, 61, (6), pp. 24582467.
    25. 25)
      • 25. Zhang, N., Zhou, C., Gao, Z., et al: ‘Torque distribution strategy of PHEV based on FCMAC neural network’, J. Jiangsu Univ. (Nat. Sci. Ed., 2017, 38, (6), pp. 652657.
    26. 26)
      • 26. Kasinathan, D., Kasaiezadeh, A., Wong, A., et al: ‘An optimal torque vectoring control for vehicle applications via real-time constraints’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 43684378.
    27. 27)
      • 27. Song, Q., Wan, H., Mi, Y., et al: ‘Optimum control strategy of drive torque for pure electric vehicles during acceleration’, J. Jiangsu Univ. (Nat. Sci. Ed., 2017, 38, (1), pp. 16.
    28. 28)
      • 28. Huang, Y., Fard, S., Khazraee, M., et al: ‘An adaptive model predictive controller for a novel battery-powered anti-idling system of service vehicles’, Energy, 2017, 127, pp. 318327.
    29. 29)
      • 29. Bhide, S., Shim, T.: ‘Novel predictive electric Li-Ion battery model incorporating thermal and rate factor effects’, IEEE Trans. Veh. Technol., 2011, 60, (3), pp. 819829.
    30. 30)
      • 30. Pan, C., Zhang, L., Chen, L., et al: ‘Heating analysis and experiment of lithium battery for different discharge rates’, J. Jiangsu Univ. (Nat. Sci. Ed., 2017, 38, (2), pp. 133138.
    31. 31)
      • 31. He, H., Xiong, R., Fan, J.: ‘Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach’, Energies, 2011, 4, pp. 582598.
    32. 32)
      • 32. Song, Y., Gao, L.: ‘Incremental battery model using wavelet-based neural networks’, IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1, (7), pp. 10751081.
    33. 33)
      • 33. Ding, H., Guo, K.: ‘Arbitrary path and speed following driver model based on vehicle acceleration feedback’, Journal of Mechanical Engineering, 2012, 5, (10), pp. 116120.
    34. 34)
      • 34. Macadam, C.: ‘Understanding and modeling the human driver’, International Journal of Vehicle Mechanics and Mobility, 2003, 40, (1), pp. 101134.
    35. 35)
      • 35. Rezaeian, A.: ‘Novel tire force estimation strategy for real-time implementation on vehicle applications’, IEEE Trans. Veh. Technol., 2015, 64, (6), pp. 22312241.
    36. 36)
      • 36. Hsiao, T.: ‘Robust estimation and control of tire traction forces’, IEEE Trans. Veh. Technol., 2013, 62, (3), pp. 13781383.
    37. 37)
      • 37. Li, L., Wang, F., Zhou, Q.: ‘Integrated longitudinal and lateral tire/road friction modeling and monitoring for vehicle motion control’, IEEE Trans. Intell. Transp. Syst., 2006, 7, (1), pp. 119.
    38. 38)
      • 38. Wang, R., Zhang, H., Wang, J.: ‘Linear parameter-varying controller design for four-wheel independently actuated electric ground vehicles with active steering systems’, IEEE Trans. Control Syst. Technol., 2014, 22, (4), pp. 12811296.
    39. 39)
      • 39. Jiang, H., Li, C., Ma, S., et al: ‘Path tracking control of automatic parking for intelligent vehicle based on non-smooth control strategy’, Journal of Jiangsu University (Natural Science Edition, 2017, 38, (5), pp. 497502.
    40. 40)
      • 40. Huang, C., Naghdy, F., Du, H.: ‘Delta operator-based fault estimation and fault-tolerant model predictive control for steer-by-wire systems’, IEEE Trans. Control Syst. Technol., 2018, 26, (5), pp. 18101817.
    41. 41)
      • 41. Huang, W., Yu, M., Fu, W., et al: ‘Analysis of influencing factors on testing results of vehicle roller anti-force brake testing platform’, Journal of Jiangsu University (Natural Science Edition, 2017, 37, (4), pp. 497502.
    42. 42)
      • 42. Tang, X., Du, H., Sun, S., et al: ‘Takagi–Sugeno fuzzy control for semi-active vehicle suspension with a magnetorheological damper and experimental validation’, IEEE/ASME Trans. Mechatronics, 2017, 22, (1), pp. 291300.
    43. 43)
      • 43. Asadi, E., Ribeiro, R., Khamesee, M., et al: ‘Analysis, prototyping, and experimental characterization of an adaptive hybrid electromagnetic damper for automotive suspension systems’, IEEE Trans. Veh. Technol., 2017, 66, (5), pp. 37033713.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.5047
Loading

Related content

content/journals/10.1049/iet-its.2018.5047
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address