http://iet.metastore.ingenta.com
1887

Accelerated adaptive super twisting sliding mode observer-based drive shaft torque estimation for electric vehicle with automated manual transmission

Accelerated adaptive super twisting sliding mode observer-based drive shaft torque estimation for electric vehicle with automated manual transmission

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The suddenly released torque that accumulated in the elastic drive shaft will bring torsional vibration and jerking feel at the shifting moment. A novel sliding mode observer is proposed to estimate the torque in drive shaft for a motor-transmission integrated powertrain system. Non-linear external characteristics of a driving motor and non-linear drag torque are considered in the electric powertrain system. In order to attenuate the chatting problem, the second-order super twisting sliding mode algorithm with an adaptive gain is adopted. Furthermore, a term ‘system damping’ is introduced to accelerate the estimation error convergence. The proposed estimation algorithm is tested on test rig for typical operating conditions. The results show that the torque in drive shaft can be estimated satisfactorily and the tracking error converges to 0 in a short time.

References

    1. 1)
      • 1. Walker, P., Zhu, B., Zhang, N.: ‘Powertrain dynamics and control of a two speed dual clutch transmission for electric vehicles’, Mech. Syst. Signal Proc., 2017, 85, pp. 115.
    2. 2)
      • 2. Walker, P.D., Fang, Y.H., Zhang, N.: ‘Dynamics and control of clutchless automated manual transmissions for electric vehicles’, J. Vib. Acoust. Trans. ASME, 2017, 139, (6), p. 13.
    3. 3)
      • 3. Mosquera-Sanchez, J.A., Sarrazin, M., Janssens, K., et al: ‘Multiple target sound quality balance for hybrid electric powertrain noise’, Mech. Syst. Signal Proc., 2018, 99, pp. 478503.
    4. 4)
      • 4. Boisvert, M., Micheau, P.: ‘Estimators of wheel slip for electric vehicles using torque and encoder measurements’, Mech. Syst. Signal Proc., 2016, 76–77, pp. 665676.
    5. 5)
      • 5. Iffouzar, K., Amrouche, B., Cherif, T.O., et al: ‘Improved direct field oriented control of multiphase induction motor used in hybrid electric vehicle application’, Int. J. Hydrog. Energy, 2017, 42, (30), pp. 1929619308.
    6. 6)
      • 6. Kumar, M.S., Revankar, S.T.: ‘Development scheme and key technology of an electric vehicle: an overview’, Renew. Sust. Energ. Rev., 2017, 70, (Suppl. C), pp. 12661285.
    7. 7)
      • 7. Cuma, M.U., Koroglu, T.: ‘A comprehensive review on estimation strategies used in hybrid and battery electric vehicles’, Renew. Sust. Energ. Rev., 2015, 42, (Suppl. C), pp. 517531.
    8. 8)
      • 8. Ruan, J., Walker, P.D., Zhang, N., et al: ‘An investigation of hybrid energy storage system in multi-speed electric vehicle’, Energy, 2017, 140, (Part 1), pp. 291306.
    9. 9)
      • 9. Luk, J.M., Kim, H.C., De Kleine, R., et al: ‘Review of the fuel saving, life cycle ghg emission, and ownership cost impacts of lightweighting vehicles with different powertrains’, Environ. Sci. Technol., 2017, 51, (15), pp. 82158228.
    10. 10)
      • 10. Mahmoud, M., Garnett, R., Ferguson, M., et al: ‘Electric buses: a review of alternative powertrains’, Renew. Sust. Energ. Rev., 2016, 62, pp. 673684.
    11. 11)
      • 11. Li, L., He, K., Wang, X., et al: ‘Sensor fault-tolerant control for gear-shifting engaging process of automated manual transmission’, Mech. Syst. Signal Proc., 2018, 99, (Suppl. C), pp. 790804.
    12. 12)
      • 12. Orlowska-Kowalska, T., Szabat, K.: ‘Damping of torsional vibrations in two-mass system using adaptive sliding neuro-fuzzy approach’, IEEE Trans. Ind. Inform., 2008, 4, (1), pp. 4757.
    13. 13)
      • 13. Bang, J.S., Ko, Y.-K., Jung, T.-H.: ‘The active damping control to reduce driveline oscillations for electric vehicles using wheel speeds’ (SAE International, Warrendale, PA, USA, 2015).
    14. 14)
      • 14. Lin, C., Sun, S., Walker, P., et al: ‘Off-line optimization based active control of torsional oscillation for electric vehicle drivetrain’, Appl. Sci., 2017, 7, (12), p. 1261.
    15. 15)
      • 15. Amann, N., Bocker, J., Prenner, F.: ‘Active damping of drive train oscillations for an electrically driven vehicle’, IEEE/ASME Trans. Mechatron., 2004, 9, (4), pp. 697700.
    16. 16)
      • 16. Mashadi, B., Crolla, D.: ‘Driveline dynamicsVehicle Powertrain Systems, (John Wiley & Sons, Oxford, UK, 2012).
    17. 17)
      • 17. Pettersson, M., Nielsen, L.: ‘Gear shifting by engine control’, IEEE Trans. Control Syst. Technol., 2000, 8, (3), pp. 495507.
    18. 18)
      • 18. Mousavi, M.S.R., Alizadeh, H.V., Boulet, B.: ‘Estimation of synchromesh frictional torque and output torque in a clutchless automated manual transmission of a parallel hybrid electric vehicle’, IEEE Trans. Veh. Technol., 2017, 66, (7), pp. 55315539.
    19. 19)
      • 19. Zhu, X., Meng, F., Zhang, H., et al: ‘Robust driveshaft torque observer design for stepped ratio transmission in electric vehicles’, Neurocomputing, 2015, 164, (C), pp. 262271.
    20. 20)
      • 20. Masmoudi, R.A., Hedrick, J.K.: ‘Estimation of vehicle shaft torque using nonlinear observers’, J. Dyn. Syst. Trans. ASME, 1992, 114, (3), pp. 394400.
    21. 21)
      • 21. Baumann, J., Torkzadeh, D.D., Ramstein, A., et al: ‘Model-based predictive anti-jerk control’, Control Eng. Pract., 2006, 14, (3), pp. 259266.
    22. 22)
      • 22. Gao, B., Lei, Y., Ge, A., et al: ‘Observer-based clutch disengagement control during gear shift process of automated manual transmission’, Vehicle Syst. Dyn., 2011, 49, (5), pp. 685701.
    23. 23)
      • 23. Gao, B., Chen, H., Ma, Y., et al: ‘Design of nonlinear shaft torque observer for trucks with automated manual transmission’, Mechatronics, 2011, 21, (6), pp. 10341042.
    24. 24)
      • 24. Zhu, X., Zhang, H., Yang, B., et al: ‘Cloud-based shaft torque estimation for electric vehicle equipped with integrated motor-transmission system’, Mech. Syst. Signal Proc., 2018, 99, pp. 647660.
    25. 25)
      • 25. Wu, L., Gao, Y., Liu, J., et al: ‘Event-triggered sliding mode control of stochastic systems via output feedback ⋆’, Automatica, 2017, 82, pp. 7992.
    26. 26)
      • 26. Biricik, S., Komurcugil, H.: ‘Optimized sliding mode control to maximize existence region for single-phase dynamic voltage restorers’, IEEE Trans. Ind. Inform., 2016, 12, (4), pp. 14861497.
    27. 27)
      • 27. Mu, C., Tang, Y., He, H.: ‘Improved sliding mode design for load frequency control of power system integrated an adaptive learning strategy’, IEEE Trans. Ind. Electron., 2017, 64, (8), pp. 67426751.
    28. 28)
      • 28. Levant, A.: ‘Homogeneity approach to high-order sliding mode design’, Automatica, 2005, 41, (5), pp. 823830.
    29. 29)
      • 29. Levant, A.: ‘Sliding order and sliding accuracy in sliding mode control’, Int. J. Control, 1993, 58, (6), pp. 12471263.
    30. 30)
      • 30. Dvir, Y., Levant, A.: ‘Accelerated twisting algorithm’, IEEE Trans. Automat. Control., 2015, 60, (10), pp. 28032807.
    31. 31)
      • 31. Shtessel, Y., Taleb, M., Plestan, F.: ‘A novel adaptive-gain supertwisting sliding mode controller: methodology and application’, Automatica, 2012, 48, (5), pp. 759769.
    32. 32)
      • 32. Gonzalez, T., Moreno, J.A., Fridman, L.: ‘Variable gain super-twisting sliding mode control’, IEEE Trans. Automat. Contr., 2012, 57, (8), pp. 21002105.
    33. 33)
      • 33. Hu, C., Wang, R., Yan, F., et al: ‘Differential steering based Yaw stabilization using ISMC for independently actuated electric vehicles’, IEEE Trans. Intell. Transp. Syst., 2018, 19, (2), pp. 627638.
    34. 34)
      • 34. Slotine, J.J.E., Hedrick, J.K., Misawa, E.A.: ‘On sliding observers for nonlinear systems’. American Control Conf., Seattle, WA, USA, June 1986, pp. 17941800.
    35. 35)
      • 35. Tang, X., Hu, X., Yang, W., et al: ‘Novel torsional vibration modeling and assessment of a power-split hybrid electric vehicle equipped with a dual-mass flywheel’, IEEE Trans. Veh. Technol., 2018, 67, (3), pp. 19902000.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.5038
Loading

Related content

content/journals/10.1049/iet-its.2018.5038
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address