Towards a fully automated car parking system

Towards a fully automated car parking system

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Currently, payment at most car parking-lots is carried out in the following manner: a ticket machine at entrance prints a ticket with a bar-code for each car entering the parking-lot. This ticket is later scanned at a payment terminal to determine the amount to be paid. The procedure can be automated using face detection and recognition technology. This automation can help with the issue of ticket loss/car theft. This study describes an automated car parking system. The proposed system consists of a camera installed at the entrance/exit of the parking-lot. Frames are continuously acquired by the camera. If there is a detected face, it is registered in the database. When a driver is leaving, the face image is captured again at the exit of parking-lot and compared in the database to conclude the identity. The system at the parking entrance/exit is composed of the following processing modules: (i) image acquisition, (ii) vehicle and face detection, and (iii) feature extraction that also includes a feature comparison/classification module for face recognition. The authors propose suitable algorithms for each module and carry out ad-hoc experiments to check the feasibility of the proposed system.


    1. 1)
      • 1. Leitloff, J., Rosenbaum, D., Kurz, F., et al: ‘An operational system for estimating road traffic information from aerial images’, Remote Sens.., 2014, 6, (11), pp. 1131511341.
    2. 2)
      • 2. Tuermer, S., Kurz, F., Reinartz, P., et al: ‘Airborne vehicle detection in dense urban areas using HoG features and disparity maps’, IEEE J. Sel. Top. Appl. Earth Obs.: Remote Sens., 2013, 6, (6), pp. 23272337.
    3. 3)
      • 3. Moranduzzo, T., Melgani, F.: ‘Automatic car counting method for unmanned aerial vehicle images’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (3), pp. 16351647.
    4. 4)
      • 4. Wen, X., Zhao, H., Wang, N., et al: ‘A rear-vehicle detection system for static images based on monocular vision’. Proc. 9th Int. Conf. Control, Automation, Robotics and Vision, Singapore, Singapore, 2006, pp. 24212424.
    5. 5)
      • 5. Liu, W., Wen, X., Duan, B., et al: ‘Rear vehicle detection and tracking for lane change assist’. Proc. IEEE Intelligent Vehicles Symp., Istanbul, Turkey, 2007, pp. 252257.
    6. 6)
      • 6. Liu, K., Mattyus, G.: ‘Fast multiclass vehicle detection on aerial images’, IEEE Geosci. Remote Sens. Lett., 2015, 12, (9), pp. 19381942.
    7. 7)
      • 7. Zusheng, Z., Ming, T., Huaqiang, Y.: ‘A parking occupancy detection algorithm based on AMR sensor’, IEEE Sens. J., 2015, 15, (2), pp. 12611269.
    8. 8)
      • 8. Wen, X., Shao, L., Fang, W., et al: ‘Efficient feature selection and classification for vehicle detection’, IEEE Trans. Circuits Syst. Video Technol., 2015, 25, (3), pp. 508517.
    9. 9)
      • 9. Mahmood, Z., Nazeer, M., Arif, M.: ‘Boosting the accuracy of AdaBoost for object detection and recognition’. 14th Int. Conf. on Frontiers of Information Technology (FIT), Islamabad, Pakistan, 2016, pp. 105110.
    10. 10)
      • 10. Mahmood, Z., Khan, M., Jawad, M., et al: ‘A parallel framework for object detection and recognition for secure vehicle parking’. 17th Int. Conf. on High Performance Computing and Communications (HPCC), New York, NY, USA, 2015, pp. 892895.
    11. 11)
      • 11. Chen, D.Y., Chen, G.R., Wang, Y.: ‘Real-time dynamic vehicle detection on resource limited mobile platform’, IET Comput. Vis., 2013, 7, (2), pp. 8189.
    12. 12)
      • 12. Zhang, Y., Kiselewich, S., Bauson, W.: ‘Legendre and Gabor moments for vehicle recognition in forward collision warning’. Proc. of IEEE Intelligent Transportation Systems Conf. (ITSC), Toronto, Canada, 2006, pp. 11851190.
    13. 13)
      • 13. Szegedy, C., Toshev, A., Erhan, D.: ‘Deep neural network for object detection’. Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 2013, pp. 25532561.
    14. 14)
      • 14. Reilly, V., Idrees, H., Shah, M.: ‘Detection and tracking of large number of targets in wide area surveillance’. Proc. of the European Conf. on Computer Vision, Heraklion, Greece, 2010, pp. 186199.
    15. 15)
      • 15. Dessauer, M., Dua, S.: ‘Low-resolution vehicle tracking using dense and reduced local gradient features maps’. Proc. of SPIE, Orlando, FL, United States, 2010, pp. 76941I76941I.
    16. 16)
      • 16. Aeschliman, C., Park, J., Kak, A.: ‘A probabilistic framework for joint segmentation and tracking’. Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, San Francisco, CA, 2010, pp. 13711378.
    17. 17)
      • 17. Jaikumar, P., Singh, A., Mitra, S.: ‘Background subtraction in videos using Bayesian learning with motion information’. Proc. of the British Machine Vision Conf., Leeds, United Kingdom, 2008, pp. 615624.
    18. 18)
      • 18. Muhammad, N., Bibi, N., Mahmood, Z., et al: ‘Reversible integer wavelet transform for blind image hiding method’, 10.1371/journal.pone.0176979, 2017.
    19. 19)
      • 19. Mughal, B., Sharif, M., Nazeer, M.: ‘Bi-model processing for early detection of breast tumor in CAD system’, Eur. Phys. J. Plus, 2017, 132, (6), pp. 114.
    20. 20)
      • 20. Muhammad, N., Bibi, N., Qasim, I., et al: ‘Digital watermarking using hall property image decomposition method’, Pattern Anal. Appl., 2018, 21, (4), pp. 116.
    21. 21)
      • 21. Muhammad, N., Bibi, N., Wahab, A., et al: ‘Image denosing with subband replacement and fusion process using Bayes estimators’, Comput. Electr. Eng., 2018, 70, pp. 413427.
    22. 22)
      • 22. Muhammad, N., Bibi, N.: ‘Digital image watermarking using partial pivoting lower and upper triangular decomposition into the wavelet domain’, IET Image Process., 2015, 9, pp. 795803, doi:10.1049/iet-ipr.2014.0395.
    23. 23)
      • 23. Muhammad, N., Bibi, N., Jahangir, A., et al: ‘Image denoising with norm weighted fusion estimators’, Pattern Anal. Appl., 2017, 21, (4), pp. 110.
    24. 24)
      • 24. Mughal, B., Nazeer, M., Sharif, M., et al: ‘Extraction of breast border and removal of pectoral muscle in wavelet domain’, Biomed. Res. –ind, 2017, 28, (10), pp. 13.
    25. 25)
      • 25. Mughal, B., Muhammad, N., Sharif, M., et al: ‘Removal of pectoral muscle based on topographic map and shape-shifting silhouette’, BMC Cancer, 2018, 18, p. 778.
    26. 26)
      • 26. Kafai, M., Bhanu, B.: ‘Dynamic Bayesian networks for vehicle classification in video’, IEEE Trans. Ind. Inf., 2012, 8, (1), pp. 100109.
    27. 27)
      • 27. Ahonen, T., Hadid, A., Pietikainen, M.: ‘Face description with local binary patterns, application to face recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (12), pp. 20372041.
    28. 28)
      • 28. Lu, J., Plataniotis, K., Venetsanopoulos, A., et al: ‘Ensemble-based discriminant learning with boosting for face recognition’, IEEE Trans. Neural Netw., 2006, 17, (1), pp. 166178.
    29. 29)
      • 29. Bishop, C.: ‘Pattern recognition and machine leaning’, vol. 1 (Springer, New York, 2006).
    30. 30)
      • 30. Viola, P., Michael, J.: ‘Robust real-time face detection’, Int. J. Comput. Vis., 2004, 57, (2), pp. 137154.
    31. 31)
      • 31. Bibi, N., Muhammad, N., Kleerekoper, A., et al: ‘Equation method for correcting clipping errors in OFDM signal’, SpringerPlus, 2016, 5, (1), pp. 112.
    32. 32)
      • 32. Turk, M., Pentland, P.: ‘Eigenfaces for recognition’, J. Cogn. Neurosci., 1991, 3, (1), pp. 7186.
    33. 33)
      • 33. Mahmood, Z., Muhammad, N., Bibi, N., et al: ‘A review on state-of-the-art face recognition approaches’, Fractals, 2017, 25, (2), pp. 1750025-11750025-19.
    34. 34)
      • 34. Mahmood, Z., Ali, T., Khan, S.U.: ‘Effects of pose and image resolution on automatic face recognition’, IET Biometrics, 2016, 5, (2), pp. 111119.
    35. 35)
      • 35. Mahmood, Z., Ali, T., Khattak, S., et al: ‘A comparative study of baseline algorithms of face recognition’. 12th Int. Conf. on Frontier of Information Technology (FIT), Islamabad, Pakistan, 2014, pp. 263268.
    36. 36)
      • 36. Huang, G., Ramesh, M., Berg, T., et al: ‘Labeled faces in the wild: a database for studying face recognition in unconstrained environments’. Technical Report, University of Massachusetts, Amherst, 2007, pp. 749.
    37. 37)
      • 37. Mahmood, Z., Ali, T., Muhammad, N., et al: ‘EAR: enhanced augmented reality system for sports entertainment applications’, KSII Trans. Internet Inf. Syst., 2017, 11, (12), pp. 60696091.
    38. 38)
      • 38. Burgstahler, D., Knapp, F., Zöller, S.: ‘Where is that car parked? A wireless sensor network-based approach to detect car positions’. 9th Int. Workshop on Practical Issues in Building Sensor Network Applications, Edmonton, Canada, 2014, pp. 514522.
    39. 39)
      • 39. Lee, S., Yoon, D., Ghosh, A.: ‘Intelligent parking-lot application using wireless sensor networks’. Int. Symp. on Collaborative Technologies and Systems, Irvine, CA, USA, 2008, pp. 4857.
    40. 40)
      • 40. Mahmood, Z., Ali, T., Khattak, S., et al: ‘Automatic player detection and identification for sports entertainment applications’, Pattern Anal. Appl., 2015, 18, (4), pp. 971982.

Related content

This is a required field
Please enter a valid email address