http://iet.metastore.ingenta.com
1887

New traction motor sizing strategy for an HEV/EV based on an overcurrent-tolerant prediction model

New traction motor sizing strategy for an HEV/EV based on an overcurrent-tolerant prediction model

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a new hybrid and electric vehicle (HEV/EV) traction motor sizing strategy, an overcurrent-tolerant prediction model is used to estimate the dynamic and thermal characteristics of a motor operating in the overcurrent region. This can be used to determine if a prospective traction motor and powertrain configuration is able to fulfil the HEV/EVs target dynamic objectives. Since the prediction model only requires minimal motor torque–speed characteristics, it can be a useful tool during the early development stages of an HEV/EV when the detailed motor parameters used in analytical models cannot be obtained. Allowing the motor to operate in the overcurrent region could downsize the traction motor used in the final HEV/EV design to one that is smaller, easier to package and likely to run in a higher efficiency region. A case study is explored where this sizing strategy is used to convert an aeroplane pushback vehicle into a series HEV and tasked with following a rigorous duty cycle. The feasibility of two HEV configurations is then analysed further. The final HEV design reduces the fuel consumption and engine emissions by up to 52% from the original internal combustion engine powered vehicle.

References

    1. 1)
      • 1. Hutchinson, T., Burgess, S., Herrmann, G.: ‘Current hybrid-electric powertrain architectures: applying empirical design data to life cycle assessment and whole-life cost analysis’, Appl. Energy, 2014, 119, (1), pp. 314329.
    2. 2)
      • 2. Mallouh, M.A., Abdelhafez, E., Salah, M., et al: ‘Model development and analysis of a mid-sized hybrid fuel cell/battery vehicle with a representative driving cycle’, J. Power Sources, 2014, 260, pp. 6271.
    3. 3)
      • 3. Castaings, A., Lhomme, W., Trigui, R., et al: ‘Comparison of energy management strategies of a battery/supercapacitors system for electric vehicle under real-time constraints’, Appl. Energy, 2016, 163, pp. 190200.
    4. 4)
      • 4. Zhou, Q., Zhang, Y., Li, Z., et al: ‘Cyber-physical energy–saving control for hybrid aircraft-towing tractor based on online swarm intelligent programming’, IEEE Trans. Ind. Inf., 2017, 14, (9), pp. 41494158.
    5. 5)
      • 5. Yilmaz, M.: ‘Limitations/capabilities of electric machine technologies and modelling approaches for electric motor design analysis in plug-in electric vehicle applications’, Renew. Sust. Energy Rev., 2015, 52, pp. 8899.
    6. 6)
      • 6. Ehsani, M., Ahmadi, A., Fadai, D.: ‘Modeling of vehicle fuel consumption and carbon dioxide emission in road transport’, Renew. Sust. Energy Rev., 2016, 53, (1), pp. 16381648.
    7. 7)
      • 7. Ehsani, M., Rahman, K., Toliyat, H.: ‘Propulsion system design of electric and hybrid vehicles’, IEEE Trans. Ind. Electron., 1997, 44, (1), pp. 1927.
    8. 8)
      • 8. Liu, X., Diallo, D., Marchand, C.: ‘Design methodology of hybrid electric vehicle energy sources: application to fuel cell vehicles’, Int. J. Autom. Technol., 2011, 12, (3), p. pp. 433441.
    9. 9)
      • 9. Millo, F., Cubito, C., Rolando, L., et al: ‘Design and development of an hybrid light commercial vehicle’, Energy, 2017, 136, pp. 9099.
    10. 10)
      • 10. Chan, C.C.: ‘The state of the art of electric, hybrid, and fuel cell vehicles’, Proc. IEEE, 2007, 95, (4), pp. 704718.
    11. 11)
      • 11. Emadi, A., Rajashekara, K., Williamson, S., et al: ‘Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations’, IEEE Trans. Veh. Technol., 2005, 54, (3), pp. 763770.
    12. 12)
      • 12. Emadi, A., Lee, Y.J., Rajashekara, K.: ‘Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles’, IEEE Trans. Ind. Electron., 2008, 55, (6), pp. 22372245.
    13. 13)
      • 13. Butler, K., Ehsani, M., Kamath, P.: ‘A matlab-based modeling and simulation package for electric and hybrid electric vehicle design’, IEEE Trans. Veh. Technol., 1998, 48, (6), pp. 17701778.
    14. 14)
      • 14. Offer, G., Howey, D., Contestabile, M., et al: ‘Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system’, Energy Policy, 2010, 38, (1), pp. 2429.
    15. 15)
      • 15. Zhou, Q., Zhang, W., Cash, S., et al: ‘Intelligent sizing of a series hybrid electric power–train system based on chaos-enhanced accelerated particle swarm optimization’, Appl. Energy, 2017, 189, pp. 588601.
    16. 16)
      • 16. Pourabdollah, M., Silvas, E., Murgovski, N., et al: ‘Optimal sizing of a series PHEV: comparison between convex optimization and particle swarm optimization’, IFAC – PapersOnLine, 2015, 48, (15), pp. 1622.
    17. 17)
      • 17. Wu, X., Cao, B., Li, X., et al: ‘Component sizing optimization of plug-in hybrid electric vehicles’, Appl. Energy, 2011, 88, (3), pp. 799804.
    18. 18)
      • 18. Cash, S., Olatunbosun, O.: ‘Fuzzy logic field-oriented control of an induction motor and a permanent magnet synchronous motor for hybrid/electric vehicle traction applications’, Int. J. Electr. Hybrid Veh., 2017, 9, (3), pp. 269284.
    19. 19)
      • 19. Evangelou, S., Shabbir, W.: ‘Dynamic modeling platform for series hybrid electric vehicles’, Int. Fed. Autom. Control, 2016, 49, (11), pp. 533540.
    20. 20)
      • 20. Lemmens, J., Vanassche, P., Driesen, J.: ‘Optimal control of traction motor drives under electrothermal constraints’, IEEE J. Emerg. Sel. Top. Power Electron., 2014, 2, (2), pp. 249263.
    21. 21)
      • 21. Pellegrino, G., Vagati, A., Boazzo, B., et al: ‘Comparison of induction and PM synchronous motor drives for EV application including design examples’, IEEE Trans. Ind. Appl., 2012, 48, (6), pp. 23222332.
    22. 22)
      • 22. Mellor, P., Roberts, D., Turner, D.: ‘Lumped parameter thermal model for electrical machines of TEFC design’, IEE Proc. B – Electr. Power Appl., 1991, 138, (5), pp. 205218.
    23. 23)
      • 23. Zhang, P., Du, Y., Habetler, T.G., et al: ‘A survey of condition monitoring and protection methods for medium-voltage induction motors’, IEEE Trans. Ind. Appl., 2011, 47, (1), pp. 3436.
    24. 24)
      • 24. Gao, Z., Habetler, T.G., Harley, R.G., et al: ‘A sensorless adaptive stator winding temperature estimator for mains-fed induction machines with continuous-operation periodic duty cycles’, IEEE Trans. Ind. Appl., 2008, 44, (5), pp. 15331542.
    25. 25)
      • 25. Beguenane, R., Benbouzid, M.: ‘Induction motors thermal monitoring by means of rotor resistance identification’, IEEE Trans. Energy Convers., 1999, 14, (3), pp. 566570.
    26. 26)
      • 26. Gao, Z., Habetler, T.G., Harley, R.G.: ‘A complex space vector approach to rotor temperature estimation for line-connected induction machines with impaired cooling’, IEEE Trans. Ind. Electron., 2009, 56, (1), pp. 239247.
    27. 27)
      • 27. Babau, R., Boldea, I., Miller, T.J.E., et al: ‘Complete parameter identification of large induction machines from no-load acceleration–deceleration tests’, IEEE Trans. Ind. Electron., 2007, 54, (4), pp. 19621972.
    28. 28)
      • 28. Grantham, C., McKinnon, D.: ‘Rapid parameter determination for induction motor analysis and control’, IEEE Trans. Ind. Appl., 2003, 39, (4), pp. 10141020.
    29. 29)
      • 29. Uddin, M., Radwan, T., Rahman, M.: ‘Performances of fuzzy-logic-based indirect vector control for induction motor drive’, IEEE Trans. Ind. Appl., 2002, 38, (5), pp. 12191225.
    30. 30)
      • 30. Gillesspie, T.D.: ‘Fundamentals of vehicle dynamics’ (Society of Automotive Engineers, Inc, Warrendale, PA, 1992).
    31. 31)
      • 31. Gao, D.W., Mi, C., Emadi, A.: ‘Modeling and simulation of electric and hybrid vehicles’, Proc. IEEE, 2007, 95, (4), pp. 729745.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2018.5016
Loading

Related content

content/journals/10.1049/iet-its.2018.5016
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address