Improved scheme of membership function optimisation for fuzzy air-fuel ratio control of GDI engines

Improved scheme of membership function optimisation for fuzzy air-fuel ratio control of GDI engines

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study researches an improved scheme of membership function optimisation (MFO) for fuzzy air–fuel ratio (AFR) control of gasoline direct injection (GDI) engines based on correspondence analysis (CA). This proportional–integral-like fuzzy knowledge-based controller (FKBC) optimised by the proposed scheme can further optimise AFR control performance while maximising conversion efficiency of the three-way catalyst to eliminate the exhaust emissions in real time. Different from the conventional experience-based membership function (MF) design method for an FKBC, the proposed MFO scheme uses CA approach and can visualise the relationship between engine step gain scenarios and designed MF patterns to precisely determine its scalar parameters for AFR regulation of GDI engines. Within this context: (i) specialised MFs for self-adaptive AFR control system of a GDI engine are designed with weight distribution; (ii) based on designed scalar parameters, the CA model with taxonomic dimensions is built for acquiring a customised MF to counter transient scenario changes more effectively; (iii) the engine controller with the proposed scheme is real time validated in a production V6 GDI engine, and its advantage in terms of engine transient control performance is further demonstrated by comparing with a benchmark controller designed based on experience.


    1. 1)
      • 1. Boulter, P.G., Barlow, T.J., McCrae, I.S.: ‘Emission factors 2009: report 3-exhaust emission factors for road vehicles in the United Kingdom’. TRL Published Project Report, 2009.
    2. 2)
      • 2. Heywood, J.: ‘Internal combustion engine fundamentals’ (McGraw-Hill Education, New York, NY, USA, 1988).
    3. 3)
      • 3. Seong, H., Lee, K., Choi, S.: ‘Effects of engine operating parameters on morphology of particulates from a gasoline direct injection (GDI) engine (No. 2013-01-2574)’. SAE Technical Paper, 2013.
    4. 4)
      • 4. Guzzella, L., Onder, C.: ‘Introduction to modeling and control of internal combustion engine systems’ (Springer Science & Business Media, Berlin, Heidelberg, Germany, 2009).
    5. 5)
      • 5. Carbot-Rojas, D.A., Escobar-Jiménez, R.F., Gómez-Aguilar, J.F., et al: ‘A survey on modeling, biofuels, control and supervision systems applied in internal combustion engines’, Renew. Sust. Energy Rev., 2017, 73, pp. 10701085.
    6. 6)
      • 6. Stobart, R.K., Challen, B.J., Bowyer, R.: ‘Electronic controls-breeding new engines (No. 2001-01-0255)’. SAE Technical Paper, 2001.
    7. 7)
      • 7. Rajamani, R.: ‘Vehicle dynamics and control’ (Springer Science & Business Media, Berlin, Heidelberg, Germany, 2011).
    8. 8)
      • 8. Stone, R.: ‘Introduction to internal combustion engines’ (Palgrave Macmillan, London, UK, 2012).
    9. 9)
      • 9. Saraswati, S., Agarwal, P.K., Chand, S.: ‘Neural networks and fuzzy logic-based spark advance control of SI engines’, Expert Syst. Appl., 2011, 38, (6), pp. 69166925.
    10. 10)
      • 10. Jansri, A., Sooraksa, P.: ‘Enhanced model and fuzzy strategy of air to fuel ratio control for spark ignition engines’, Comput. Math. Appl., 2012, 64, (5), pp. 922933.
    11. 11)
      • 11. Kumar, M., Shen, T.: ‘Estimation and feedback control of air-fuel ratio for gasoline engines’, Control Theory Technol., 2015, 13, (2), pp. 151159.
    12. 12)
      • 12. Efimov, D.V., Nikiforov, V.O., Javaherian, H.: ‘Supervisory control of air–fuel ratio in spark ignition engines’, Control Eng. Pract., 2014, 30, pp. 2733.
    13. 13)
      • 13. Kumar, M., Shen, T.: ‘Cyclic model based generalized predictive control of air-fuel ratio for gasoline engines’, J. Therm. Sci. Technol., 2016, 11, (1), pp. JTST0009JTST0009.
    14. 14)
      • 14. Boiocchi, R., Gernaey, K.V., Sin, G.: ‘Systematic design of membership functions for fuzzy-logic control: a case study on one-stage partial nitritation/anammox treatment systems’, Water Res.., 2016, 102, pp. 346361.
    15. 15)
      • 15. Rojas, C.A., Rodriguez, J.R., Kouro, S., et al: ‘Multiobjective fuzzy-decision-making predictive torque control for an induction motor drive’, IEEE Trans. Power Electron., 2017, 32, (8), pp. 62456260.
    16. 16)
      • 16. Nabipour, M., Razaz, M., Seifossadat, S.G., et al: ‘A novel adaptive fuzzy membership function tuning algorithm for robust control of a PV-based dynamic voltage restorer (DVR)’, Eng. Appl. Artif. Intell., 2016, 53, pp. 155175.
    17. 17)
      • 17. Sicre, C., Cucala, A.P., Fernández-Cardador, A.: ‘Real time regulation of efficient driving of high speed trains based on a genetic algorithm and a fuzzy model of manual driving’, Eng. Appl. Artif. Intell., 2014, 29, pp. 7992.
    18. 18)
      • 18. Huang, Y., Khajepour, A., Khazraee, M., et al: ‘A comparative study of the energy-saving controllers for automotive air-conditioning/refrigeration systems’, J. Dyn. Syst. Meas. Contr., 2017, 139, (1), p. 014504.
    19. 19)
      • 19. Huang, Y., Khajepour, A., Zhu, T., et al: ‘A supervisory energy-saving controller for a novel anti-idling system of service vehicles’, IEEE/ASME Trans. Mechatronics, 2017, 22, (2), pp. 10371046.
    20. 20)
      • 20. Baǧiş, A.: ‘Determining fuzzy membership functions with tabu search—an application to control’, Fuzzy Sets Syst.., 2003, 139, (1), pp. 209225.
    21. 21)
      • 21. Caraveo, C., Valdez, F., Castillo, O.: ‘Optimization of fuzzy controller design using a new bee colony algorithm with fuzzy dynamic parameter adaptation’, Appl. Soft Comput., 2016, 43, pp. 131142.
    22. 22)
      • 22. Acilar, A.M., Arslan, A.: ‘Optimization of multiple input–output fuzzy membership functions using clonal selection algorithm’, Expert Syst. Appl., 2011, 38, (3), pp. 13741381.
    23. 23)
      • 23. Chung, J.H., Pak, J.M., Ahn, C.K., et al: ‘Particle filtering approach to membership function adjustment in fuzzy logic systems’, Neurocomputing, 2017, 237, pp. 166174.
    24. 24)
      • 24. Lee, C.H., Pan, H.Y.: ‘Performance enhancement for neural fuzzy systems using asymmetric membership functions’, Fuzzy Sets Syst., 2009, 160, (7), pp. 949971.
    25. 25)
      • 25. Ma, H., Xu, H., Wang, J., et al: ‘Model-based multiobjective evolutionary algorithm optimization for HCCI engines’, IEEE Trans. Vehicular Technol., 2015, 64, (9), pp. 43264331.
    26. 26)
      • 26. Ma, H., Li, Z., Tayarani, M., et al: ‘Computational intelligence nonmodel-based calibration approach for internal combustion engines’, J. Dyn. Syst. Meas. Contr., 2018, 140, (4), p. 041002.
    27. 27)
      • 27. Li, Z., Li, J., Zhou, Q., et al: ‘Intelligent air/fuel ratio control strategy with a PI-like fuzzy knowledge–based controller for gasoline direct injection engines’. Proc. the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2018, doi: 10.1177/0954407018779180.
    28. 28)
      • 28. Zhang, Y., Zhou, Q., Li, Z., et al: ‘Intelligent transient calibration of a dual-loop EGR diesel engine using chaos-enhanced accelerated particle swarm optimization algorithm’. Proc. the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2018, 0954407018776745.
    29. 29)
      • 29. Wang, C., Xu, H., Herreros, J.M., et al: ‘Impact of fuel and injection system on particle emissions from a GDI engine’, Appl. Energy, 2014, 132, pp. 178191.
    30. 30)
      • 30. Jantzen, J.: ‘Foundations of fuzzy control: a practical approach’ (John Wiley & Sons, Hoboken, NJ, USA, 2013).
    31. 31)
      • 31. Fazzolari, M., Alcala, R., Nojima, Y., et al: ‘A review of the application of multiobjective evolutionary fuzzy systems: current status and further directions’, IEEE Trans. Fuzzy Syst., 2013, 21, (1), pp. 4565.
    32. 32)
      • 32. Jager, R.: ‘Fuzzy logic in control’ (Rene Jager, Amsterdam, The Netherlands, 1995).
    33. 33)
      • 33. Liang, J., Hua, S., Zeng, G., et al: ‘Application of weight method based on canonical correspondence analysis for assessment of anatidae habitat suitability: a case study in east dongting lake, middle China’, Ecol. Eng., 2015, 77, pp. 119126.
    34. 34)
      • 34. Beh, E.J., Lombardo, R.: ‘Correspondence analysis: theory, practice and new strategies’ (John Wiley & Sons, Hoboken, NJ, USA, 2014).
    35. 35)
      • 35. Sahu, R.K., Panda, S., Sekhar, G.C.: ‘A novel hybrid PSO-PS optimized fuzzy PI controller for AGC in multi area interconnected power systems’, Int. J. Electr. Power Energy Syst., 2015, 64, pp. 880893.

Related content

This is a required field
Please enter a valid email address